Growth estimates for the coefficients of generalized formal solutions, and representation of solutions using Laplace integrals and factorial series

Werner BALSER (Received March 2, 1981)

0. Introduction

a) Functions represented by Laplace integrals:

A question of considerable interest in the theory of meromorphic differential equations as well as in other fields of analysis is, given a function f(z) that has an asymptotic expansion as $z \rightarrow \infty$ (in some sector), can f(z) be represented by means of a (generalized) Laplace integral such that one can find a convergent expansion of the integrand (in some neighborhood of zero) in terms of the asymptotic expansion of f(z)?

In 1918, F. Nevanlinna [17] has given an answer to this question, generalizing some earlier results of G. N. Watson [23]: Suppose that (for fixed reals $a \ge 0$ and d > 0) the function f(z) is analytic in the sector

$$S = \{ |z| > a, |\arg z| < \pi/(2d) \}$$

(note that throughout this paper the variable z is on the Riemann surface of the Logarithm, hence in case d < 1/2 the function f(z) may be multi-valued). Furthermore, assume the existence of a formal power series

$$\sum_{1}^{\infty} f_k z^{-k}$$

such that for some positive constant K and every sufficiently large integer j

(0.1) $|z^{j}(f(z) - \sum_{1}^{j-1} f_{k} z^{-k})| \leq K^{j} \Gamma(1+j/d) \quad (z \in S).$

Then it is easy to conclude

 $|f_i| \leq K^j \Gamma(1+j/d)$ for sufficiently large j,

hence the power series

(0.2)
$$\psi(u) = \sum_{1}^{\infty} f_k u^k / \Gamma(1+k/d)$$

converges for $|u| < K^{-1}$. Representing $\psi(u)$ as a generalized inverse Laplace integral over f(z), F. Nevanlinna proved that $\psi(u)$ can be analytically continued into an (explicitly given) region containing the positive real axis, and for every