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0. Introduction

a) Functions represented by Laplace integrals:
A question of considerable interest in the theory of meromorphic differential

equations as well as in other fields of analysis is, given a function /(z) that has an
asymptotic expansion as z-*oo (in some sector), can /(z) be represented by
means of a (generalized) Laplace integral such that one can find a convergent
expansion of the integrand (in some neighborhood of zero) in terms of the asymp-
totic expansion of/(z)?

In 1918, F. Nevanlinna [17] has given an answer to this question, generaliz-
ing some earlier results of G. N. Watson [23]: Suppose that (for fixed reals
α>0 and d>0) the function/(z) is analytic in the sector

S={\z\>a, |argz|<π/(2d)}

(note that throughout this paper the variable z is on the Riemann surface of the
Logarithm, hence in case d<l/2 the function/(z) may be multi-valued). Fur-
thermore, assume the existence of a formal power series

such that for some positive constant K and every sufficiently large integer j

(O.i) l^(/(2)-ΣΓ7^" k)l < KJΓ(\ +jid) (zes).

Then it is easy to conclude

\fj\ < &Γ(l +j/d) for sufficiently large j ,

hence the power series

(0.2) Ψ(u)=Σΐfk

converges for \U\KK~1. Representing \j/(u) as a generalized inverse Laplace
integral over /(z), F. Nevanlinna proved that ψ(w) can be analytically continued
into an (explicitly given) region containing the positive real axis, and for every


