Fourier-like transformation and a representation of the Lie algebra point(n+1, 2)

Kiyotaka II

(Received January 14, 1982)

1. Introduction

The space M of non-zero cotangent vectors to the unit sphere S^n is an SO(n+1, 2)-homogeneous symplectic manifold. The geometry of the SO(n+1, 2)-action is studied by several authors. (See Akyildiz [1], Onofri [10], [11], Rawnsley [14], Souriau [19] and Wolf [24], [25].) The present note is motivated by Wolf [24], [25]. We consider the problem of "quantizing" this SO(n+1, 2)-action. The standard procedure of geometric quantization does not work because there are no SO(n+1, 2)-invariant polarizations. (See Elhadad [2], Ozeki and Wakimoto [12], Wakimoto [22] and Wolf [24].) We will work in the framework of Lie algebras rather than groups. The Lie algebra $\mathfrak{so}(n+1, 2)$ is realized as a Poisson subalgebra \mathfrak{G} . By integration of the Hamiltonian vector fields associated with elements of 6, we get the symplectic action of SO(n+1, 2) on M. To construct a representation of $\mathfrak{so}(n+1, 2)$, we use a pair of transversal polarizations: one is the vertical polarization Q and the other is a partially complex polarization P invariant under the geodesic flow. The space $\Gamma_0(\mathbf{L} \otimes L^2)$ of smooth Q-horizontal sections of a complex line bundle $L \otimes L^{Q}$ over M is naturally identified with $C^{\infty}(S^{n})$. While there exist no smooth *P*-horizontal sections in $\Gamma(\mathbf{L} \otimes L^{\mathbf{P}})$ except for zero-section, so we must consider "singular" sections. The supports of singular P-horizontal sections are in a disjoint union of hypersurfaces M_m (m=0, 1, 2,...) in M. Each M_m is identified with the Stiefel manifold SO(n+1)/SO(n-1), which is an SO(2)-principal bundle over the Grassmann manifold $SO(n+1)/(SO(2) \times SO(n-1))$. The Grassmann manifold is an SO(n+1)-homogeneous complex manifold. Let L_m be the SO(n+1, C)-homogeneous holomorphic line bundle over the Grassmann manifold given in Kowata and Okamoto [8]. Holomorphic sections of L_m are identified with functions on SO(n+1)/SO(n-1). If we identify M_m with this Stiefel manifold, then holomorphic sections of L_m are identified with functions on M_m . Since $L \otimes L^{P}$ is a trivial bundle over M, these functions are identified with singular sections of $L \otimes L^P$ with supports in M_m . These sections are P-horizontal. The correspondence: a holomorphic section of $L_m \mapsto a$ P-horizontal section of $L \otimes L^P$ with support in M_m , is bijective. Thus, the consideration of the P-horizontal sections is equivalent to that of all the holomorphic sections of L_m (m=0, 1, 2,...)