Oscillatory solutions of functional differential equations generated by deviation of arguments of mixed type

A. F. Ivanov ${ }^{1)}$, Y. Kitamura ${ }^{2}$, T. Kusano ${ }^{3}$) and V. N. Shevelo ${ }^{1)}$
(Received May 6, 1982)

1. Introduction

In this paper we consider the higher order functional differential equation of the form
(E) $\quad x^{(n)}(t)+F\left(t, x(t), x\left(g_{1}(t)\right), \ldots, x\left(g_{N}(t)\right), \ldots, x^{(n-1)}(t), \ldots, x^{(n-1)}\left(g_{N}(t)\right)\right)=0$ and its particular cases

$$
\begin{equation*}
x^{(n)}(t)-\sum_{h=1}^{N} p_{h}(t) f_{h}\left(x\left(g_{h}(t)\right)\right)=0, \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
x^{(n)}(t)+\sum_{h=1}^{N} p_{h}(t) f_{h}\left(x\left(g_{h}(t)\right)\right)=0, \tag{B}
\end{equation*}
$$

where the deviating arguments $g_{h}(t)$ are of general type.
It is assumed that the function $F\left(t, u_{0}, \ldots, u_{N}, u_{0}^{(1)}, \ldots, u_{N}^{(n-1)}\right)$ satisfies either the condition

$$
\begin{equation*}
F\left(t, u_{0}, \ldots, u_{N}, u_{0}^{(1)}, \ldots, u_{N}^{(1)}, \ldots, u_{N}^{(n-1)}\right) u_{0} \geq 0 \tag{1}
\end{equation*}
$$

or the condition

$$
\begin{equation*}
F\left(t, u_{0}, \ldots, u_{N}, u_{0}^{(1)}: \ldots, u_{N}^{(1)}, \ldots, u_{N}^{(n-1)}\right) u_{0} \leq 0 \tag{2}
\end{equation*}
$$

in the domain

$$
\Omega=\left\{\left(t, u_{l}^{(q)}\right): t \in[a, \infty), u_{0} u_{l}>0,0 \leq l \leq N, 0 \leq q \leq n-1\right\} .
$$

By a proper solution of equation (E) we mean a function $x \in C^{n}\left[\left[T_{x}, \infty\right), R\right]$ which satisfies (E) for all sufficiently large t and $\sup \{|x(t)|: t \geq T\}>0$ for any $T \geq T_{x}$. We make the standing hypothesis that equation (E) does possess proper solutions. A proper solution of (E) is called oscillatory if it has arbitrarily large zeros; otherwise the solution is called nonoscillatory.

When equation (E) is ordinary $\left(g_{i}(t) \equiv t, 1 \leq i \leq N\right)$, the oscillatory properties of (E) satisfying (1) are essentially different from those of (E) satisfying (2). In case (1) holds, the "property A" is typical for equation (E): if n is even, then all proper solutions are oscillatory, and if n is odd, then every proper solution is either oscillatory or monotonically tending to zero as $t \rightarrow \infty$. On the other hand, when (2) holds the "property B " is typical: if n is even, then every solution is either oscillatory or else tending monotonically to infinity or to zero as $t \rightarrow \infty$, and if n

