# On products of the $\beta$-elements in the stable homotopy of spheres 

Shichirô Oka $^{1)}$ and Katsumi Shimomura ${ }^{2)}$<br>(Received April 30, 1982)

## §1. Introduction

In his paper [20], H. Toda introduced the elements $\beta_{s}, 1 \leqq s \leqq p-1$, in the $p$-primary component of the stable homotopy of spheres for an odd prime $p$, and L. Smith [18] extended them to an infinite family $\left\{\beta_{s}\right\}_{s \geqq 1}$, in case $p \geqq 5$. Later, with the development and plentiful knowledge of the Adams-Novikov spectral sequence based on the Brown-Peterson homology $B P$ such as [5], it is clarified that these $\beta$-elements are detected in $\operatorname{Ext}_{B P * B P}^{2}\left(B P_{*}, B P_{*}\right)$, the second line of the $E_{2}$-term of the spectral sequence, which consists of an extensive family of elements $\beta_{s / r, i}$ with suitable triple indices including $\beta_{s}=\beta_{s / 1,1}$ (cf. (4.1)). The construction of the homotopy elements $\beta_{s}$ is immediate from the one of the 4 -cell complex called $V(1)$ and appropriate stable self-maps of $V(1)$ [18], and in this way, $\mathbf{L}$. Smith [19], R. Zahler [23] and the first author [9], [11], [12] constructed homotopy elements which correspond with the generalized $\beta$ 's in Ext ${ }^{2}$ including

$$
\beta_{s p / r}(s \geqq 1,1 \leqq r<p), \quad \beta_{s p / p}(s \geqq 2), \quad \beta_{s p^{2} / p, 2}(s \geqq 2),
$$

where $\beta_{s p / r, 1}=\beta_{s p / r}$ and some of these were called $\varepsilon$ 's and $\rho$ 's in earlier literatures (see (2.4), (2.5)).

The purpose of this paper is to study the products $\beta_{s} \beta_{t p / r}$ with $r \leqq p$ and $\beta_{s} \beta_{t p^{2} / p, 2}$ in $\pi_{*}^{S}$, the stable homotopy ring of spheres, in case $p \geqq 5$. In particular, we shall study whether they are trivial or not. In this direction, H. Toda [21] obtained a formula of $\beta_{s} \beta_{t}$ extending the earlier work of N . Yamamoto [22] and including the relation $\beta_{s} \beta_{t p}=0$ which is the case $r=1$ of ours.

Theorem A. Let $p$ be a prime $\geqq 5$, and $r, s, t$ be positive integers with $r \leqq p$ and $r \leqq p-1$ if $t=1$. Then the element $\beta_{s} \beta_{t p / r}$ in $\pi_{*}^{S}$ is trivial, if one of the following holds:
(i) $r \leqq p-2$.
(ii) $r=p-1$ and $s \not \equiv-1 \bmod p$.
(iii) $r=p-1, p$ and $t \equiv 0 \bmod p$.

The next cases we have to investigate are (iv) $r=p-1, s \equiv-1 \bmod p$ and $t \not \equiv 0 \bmod p$; and (v) $r=p$ and $t \not \equiv 0 \bmod p$. For the case (iv), we obtain a weak

