The pure braid groups and the Milnor $\bar{\mu}$ -invariants of links

Tetsusuke OHKAWA

(Received January 14, 1982)

1. The statement of results

In this note, we study a relation between the pure braid groups P_n and the Milnor $\bar{\mu}$ -invariants of links, and shall prove the mod p residual nilpotence of P_n . Let

$$X_n = \{ (x_1, ..., x_n) \in \mathbb{C}^n \mid x_i \neq x_j \text{ if } i \neq j \}$$

be the configuration space of C. Then the symmetric group S_n of degree n acts freely on X_n by the permutation of the coordinates. Let $Y_n = X_n/S_n$ be the quotient space by the action of S_n . Then we have

$$\pi_i(X_n) = \pi_i(Y_n) = 0 \quad (i \ge 2)$$

and the exact sequence

$$1 \longrightarrow \pi_1(X_n) \longrightarrow \pi_1(Y_n) \longrightarrow S_n \longrightarrow 1.$$

DEFINITION 1. $\pi_1(Y_n)$ (resp. $\pi_1(X_n)$) is said to be the braid group (resp. the pure braid group) of degree n, and is denoted by B_n (resp. P_n).

In fact, B_n coincides with Artin's braid group of the equivalence classes of braids (see [1]).

For any braid $b \in B_n$, let \hat{b} be the closed braid of b (see [1]). If $b \in P_n$, then \hat{b} is a link of *n* components in S^3 .

DEFINITION 2. Put

$$P_{n,q} = \{ b \in P_n \mid \overline{\mu}(i_1 \cdots i_k)(\hat{b}) = 0 \text{ for any } k \le q \},$$

$$P_{n,q}^{(p)} = \{ b \in P_n \mid \overline{\mu}(i_1 \cdots i_k)(\hat{b}) \equiv 0 \mod p \text{ for any } k \le q \}$$

where $\bar{\mu}$ is the Milnor $\bar{\mu}$ -invariant of links and p is a prime (see [2]).

Then we can prove the following

THEOREM 1. (i) $P_{n,q}$ is a normal subgroup of B_n and therefore of P_n .

- (ii) $[P_{n,q}, P_{n,r}] \subset P_{n,q+r}([,])$ denotes the commutator group).
- (iii) $\bigcap_{a} P_{n,a} = \{1\}.$