On the space of orderings and the group H

Daiji KIJIMA and Mieo NISHI (Received September 20, 1982)

Let F be a formally real field and P a preordering of F. In his paper [7], M. Marshall introduced an equivalence relation in the space X(F/P) of orderings by making use of fans of index 8, and the notion of connected components of X(F/P) by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected components of X(F/P) coincides with the dimension of \mathbb{Z}_2 -vector space H(P)/Pfor a subgroup H(P), which is defined in §2. We also show, in §3, that if $K = F(\sqrt{a})$ is a quadratic extension of F with a an element of Kaplansky's radical, then the number of connected components of X(K/P') equals twice that of X(F/P), where P' is the preordering $\Sigma P \cdot \dot{K}^2$ of K. We should note that the groups H(P) and H(P') are connected by an important relation $N^{-1}(H(P)) = F \cdot H(P')$, where N is the norm map of K to F.

For a subset A in a set B, the cardinality of A will be denoted by |A| and the complementary subset of A in B by B-A or A^c .

§1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F} , P is said to be a preordering of F if P is additively closed and $\dot{F}^2 \subseteq P$. We denote by X(F) the space of all orderings σ of F and by X(F/P) the subspace of all orderings σ with $P(\sigma) \supseteq P$, where $P(\sigma)$ is the positive cone of σ . For a subset Y of X(F), we denote by Y^{\perp} the preordering $\cap P(\sigma), \sigma \in Y$. Conversely for any preordering P, there exists a subset $Y \subseteq X(F)$ such that $P = Y^{\perp}$. Thus we have $P = X(F/P)^{\perp}$ and in particular $X(F)^{\perp} = D_F(\infty) = \Sigma \dot{F}^2$. We put $\phi^{\perp} = \dot{F}$ for convenience. The topological structure of X(F) is determined by Harrison sets $H(a) = \{\sigma \in X(F); a \in P(\sigma)\}$ as its subbasis, where a ranges over \dot{F} . An arbitrary open set in X(F) is thus a union of sets of the form $H(a_1, \ldots, a_n) = H(a_1) \cap \cdots \cap H(a_r)$. For a preordering P of F, we write $H(a_1, \ldots, a_n/P) = H(a_1, \ldots, a_n) \cap X(F/P)$ where $a_i \in \dot{F}$.

For two forms f and g over F, we write $f \sim g \pmod{P}$ if for any $\sigma \in X(F/P)$, $sgn_{\sigma}(f) = sgn_{\sigma}(g)$ where $sgn_{\sigma}(f)$ and $sgn_{\sigma}(g)$ are the signatures at σ of f and g, respectively. If $f \sim g \pmod{P}$ and $\dim f = \dim g$, we write $f \cong g \pmod{P}$. For