On the space of orderings and the group H

Daiji Kimma and Mieo Nishi
(Received September 20, 1982)

Let F be a formally real field and P a preordering of F. In his paper [7], M. Marshall introduced an equivalence relation in the space $X(F / P)$ of orderings by making use of fans of index 8 , and the notion of connected components of $X(F / P)$ by an equivalence class of the relation.

The main purpose of this paper is to show that the number of connected components of $X(F / P)$ coincides with the dimension of \boldsymbol{Z}_{2}-vector space $H(P) / P$ for a subgroup $H(P)$, which is defined in $\S 2$. We also show, in $\S 3$, that if $K=$ $F(\sqrt{a})$ is a quadratic extension of F with a an element of Kaplansky's radical, then the number of connected components of $X\left(K / P^{\prime}\right)$ equals twice that of $X(F / P)$, where P^{\prime} is the preordering $\Sigma P \cdot \dot{K}^{2}$ of K. We should note that the groups $H(P)$ and $H\left(P^{\prime}\right)$ are connected by an important relation $N^{-1}(H(P))=F \cdot H\left(P^{\prime}\right)$, where N is the norm map of K to F.

For a subset A in a set B, the cardinality of A will be denoted by $|A|$ and the complementary subset of A in B by $B-A$ or A^{c}.

§ 1. Preorderings and fans

Throughout this paper, a field F always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F}, P is said to be a preordering of F if P is additively closed and $\dot{F}^{2} \subseteq P$. We denote by $X(F)$ the space of all orderings σ of F and by $X(F / P)$ the subspace of all orderings σ with $P(\sigma) \supseteq P$, where $P(\sigma)$ is the positive cone of σ. For a subset Y of $X(F)$, we denote by Y^{\perp} the preordering $\cap P(\sigma), \sigma \in Y$. Conversely for any preordering P, there exists a subset $Y \subseteq X(F)$ such that $P=Y^{\perp}$. Thus we have $P=X(F / P)^{\perp}$ and in particular $X(F)^{\perp}=D_{F}(\infty)=\Sigma \dot{F}^{2}$. We put $\phi^{\perp}=\dot{F}$ for convenience. The topological structure of $X(F)$ is determined by Harrison sets $H(a)=\{\sigma \in X(F) ; a \in P(\sigma)\}$ as its subbasis, where a ranges over \dot{F}. An arbitrary open set in $X(F)$ is thus a union of sets of the form $H\left(a_{1}, \ldots, a_{r}\right)=H\left(a_{1}\right) \cap \cdots \cap$ $H\left(a_{r}\right)$. For a preordering P of F, we write $H\left(a_{1}, \ldots, a_{n} / P\right)=H\left(a_{1}, \ldots, a_{n}\right) \cap$ $X(F / P)$ where $a_{i} \in \dot{F}$.

For two forms f and g over F, we write $f \sim g(\bmod P)$ if for any $\sigma \in X(F / P)$, $\operatorname{sg} n_{\sigma}(f)=\operatorname{sgn} n_{\sigma}(g)$ where $\operatorname{sgn} n_{\sigma}(f)$ and $\operatorname{sgn} n_{\sigma}(g)$ are the signatures at σ of f and g, respectively. If $f \sim g(\bmod P)$ and $\operatorname{dim} f=\operatorname{dim} g$, we write $f \cong g(\bmod P)$. For

