HIROSHIMA MATH. J. 13 (1983), 53–63

Mean values and associated measures of superharmonic functions

David H. ARMITAGE (Received January 5, 1982) (Revised June 14, 1982)

1. Introduction

Throughout this paper Ω will denote a non-empty open subset of the Euclidean space \mathbb{R}^n $(n \ge 2)$. For each point x of \mathbb{R}^n and each positive number r, let B(x, r) and S(x, r) denote, respectively, the open ball and the sphere of centre x and radius r. We shall use v to denote a superharmonic function in Ω .

If the closure $\overline{B}(x, r)$ of B(x, r) is contained in Ω , then $v(x) \ge \mathcal{M}(v, x, r)$, where $\mathcal{M}(v, x, r)$ is the spherical mean value of v given by

$$\mathscr{M}(v, x, r) = (s_n r^{n-1})^{-1} \int_{S(x,r)} v ds$$

Here s denotes surface area measure on S(x, r) and s_n is the surface area of the unit sphere in \mathbb{R}^n . It is well known that if $B(x, R) \subseteq \Omega$, then $\mathcal{M}(v, x, \cdot)$ is decreasing on (0, R) and $\mathcal{M}(v, x, r) \rightarrow v(x)$ as $r \rightarrow 0+$.

The measure v associated to v is a non-negative (Radon) measure in Ω such that

$$\int_{\Omega} \phi dv = -(p_n s_n)^{-1} \int_{\Omega} v(x) \Delta \phi(x) dx$$

for each infinitely differentiable function ϕ with compact support in Ω . Here Δ is the *n*-dimensional Laplacian operator and $p_n = \max\{1, n-2\}$.

We are concerned here with a comparison of the behaviour of $\mathcal{M}(u, x, r)/\mathcal{M}(v, x, r)$ and $\mu(\overline{B}(x, r))/\nu(\overline{B}(x, r))$ as $r \to 0+$, where u is a superharmonic function in Ω with associated measure μ and x is a point of Ω such that $\nu(x) = +\infty$. As applications, we shall obtain results which restrict the size of the set of points at which, for example,

$$\limsup_{r \to 0^+} r^{\alpha} \mathcal{M}(u, x, r) > 0 \qquad (n \ge 3, 0 < \alpha \le n-2)$$

and we shall improve some recent results of Kuran [6] on superharmonic and harmonic extensions.

For the latter application, we shall need to work, more generally, with the case where u is δ -superharmonic in an open subset ω of Ω . Recall that u is said to be δ -superharmonic in ω if there exist superharmonic functions u_1 and u_2 in