On the extendibility of vector bundles over the lens spaces and the projective spaces

Haruo MAKI (Received May 17, 1982)

§1. Introduction

Let X and A be a topological space and its subspace. Then a fibre bundle ζ over A is said to be *extendible* to X, if there is a fibre bundle α over X whose restriction $\alpha | A$ to A is equivalent to ζ .

R. L. E. Schwarzenberger ([9; Appendix I], [21]) and several authors studied the extendibility of vector bundles over the complex (resp. real) projective *n*space CP^n (resp. RP^n) to CP^m (resp. RP^m) for m > n (cf., e.g., the references of [24]).

For an integer $q \ge 2$, let L_q^n denote the standard lens space mod q or its *n*-skeleton:

$$L_q^{2i+1} = L^i(q) = S^{2i+1}/Z_q$$
 or $L_q^{2i} = \pi(S^{2i})(\pi: S^{2i+1} \longrightarrow L_q^{2i+1}$ is the projection),

where $L_2^n = RP^n$. The purpose of this paper is to study the extendibility of complex (or real) vector bundles over L_q^n to L_q^m for m > n, as a continuation of the previous papers [18], [14] and [15].

Let η be the canonical complex line bundle over L_q^n , i.e., the induced bundle $\pi^*\eta$ of the one η over CP^i by the natural projection $\pi: L_q^{2i+1} \rightarrow CP^i$ or its restriction $\pi^*\eta | L_q^{2i}$. Then the main results on complex bundles are stated as follows:

THEOREM 1.1. Let ζ be a complex t-plane bundle over L_q^n . Then ζ is stably equivalent to a complex $t'(=\sum_{i=1}^{q-1} b_i)$ -plane bundle $\zeta' = \sum_{i=1}^{q-1} b_i \eta^i$ over L_q^n for some integers $b_i \ge 0$. Furthermore, we have the following (i) and (ii):

(i) If $t \ge \lfloor n/2 \rfloor$, then ζ is extendible to L_q^{2t+1} . If $t \ge \lfloor (n+1)/2 \rfloor$ and $t \ge t'$, then ζ is extendible to L_q^m for any $m \ge n$.

(ii) Take a prime factor p of q with $p \leq \lfloor n/2 \rfloor + 1$, and put $a = \lfloor n/2(p-1) \rfloor$ and

$$c_k \equiv \sum_l b_{lp+k} \mod p^a, 0 \leq c_k < p^a, \quad for \quad 1 \leq k \leq p-1.$$

If there is an integer m satisfying

$$t < m < p^a \text{ and } \sum_{j_1 + \dots + j_{p-1} = m} \prod_{k=1}^{p-1} {c_k \choose j_k} k^{j_k} \neq 0 \mod p,$$