Weak boundary components in R^{N}

Dedicated to Professor M. Ohtsuka for his 60th birthday

Hiromichi Yamamoto

(Received December 23, 1982)

Introduction

Let D be a bounded plane domain and γ be a component of the boundary of D consisting of a single point. It is called by Sario [7] weak if its image under any conformal mapping of D consists of a single point. Jurchescu [3] gave a characterization of the weakness by means of extremal length.

In the N-dimensional euclidean space $R^{N}(N \geqq 3)$, Sario [8] introduced the notion of the capacity c_{γ} of a subboundary γ of a domain in R^{N} and posed the following question: Is a component γ of a compact set E in R^{N} a point if and only if $c_{\gamma}=0$ for the domain $R^{N}-E([8, \mathrm{p} .110])$? A boundary component γ is called weak if $c_{\gamma}=0$.

In the present paper we shall be concerned with this question. Let D be a domain in R^{N} and E be a compact set such that $\gamma=\partial E$ is a subboundary of D. We shall give an example (Example 1) in which γ is a point but $c_{\gamma} \neq 0$. Moreover, in case γ is an isolated subboundary, we shall show (Theorem 2) that $c_{\gamma}=0$ if and only if the Newtonian capacity $C_{2}(E)=0$. Since there exists a continuum E with $C_{2}(E)=0$ (cf. [1]), it follows that even for a continuum $E, \gamma=\partial E$ can be weak.

In §4, we shall give a characterization of the weakness by means of the extremal length of order 2. Let B be a ball in D and $\hat{\Gamma}$ denote the family of curves in the Kerékjártó-Stoïlow compactification each of which connects γ and B. We shall show (Theorem 4) that $c_{\gamma}=0$ if and only if the extremal length $\lambda_{2}(\hat{\Gamma})=\infty$. In §5, we shall derive the modular criterion of the weakness which is well known for Riemann surfaces (cf. [9]).

§ 1. Preliminaries

Let $R^{N}(N \geqq 3)$ be the N-dimensional euclidean space. We shall denote by $x=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ a point in R^{N}, and set $|x|=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{N}^{2}\right)^{1 / 2}$. For a set E in R^{N}, we denote by ∂E and \bar{E} the boundary and the closure of E with respect to the N-dimensional Möbius space $R^{N} \cup\{\infty\}$, respectively. Let $B(r, x)$ denote the open N-ball of radius r and centered at x. The area of $\partial B(1, x)$ will be written as ω_{N}. For a function u defined in a domain G, we let ∇u denote the gradient of

