The Bergman kernel function for symmetric Siegel domains of type III

Dedicated to Professor K. Murata for his 60th birthday

Toru Inoue
(Received December 14, 1982)

It is known (Wolf-Korányi [7]) that every hermitian symmetric space of noncompact type has a standard realization as a Siegel domain of type III. In this note we give an explicit formula for the Bergman kernel function of such a symmetric Siegel domain.

The general definition of Siegel domain of type III was given by PyatetskiiShapiro [4] as follows. Let U, V and W be complex vector spaces. Let $U_{\boldsymbol{R}}$ be a real form of U, Ω an open convex cone in $U_{\boldsymbol{R}}$, and B a bounded domain in W. Given any $w \in B$, let Φ_{w} be a semi-hermitian form of $V \times V$ to U, i.e., $\Phi_{w}=\Phi_{w}^{h}+$ Φ_{w}^{b} where Φ_{w}^{h} is hermitian relative to the complex conjugation of U over $U_{\boldsymbol{R}}$ and Φ_{w}^{b} is symmetric \boldsymbol{C}-bilinear. Then the domain

$$
\left\{(u, v, w) \in U \oplus V \oplus W ; \operatorname{Im} u-\operatorname{Re} \Phi_{w}(v, v) \in \Omega, w \in B\right\}
$$

is called a Siegel domain of type III. Siegel domains of type II are degenerate special case $W=0$, i.e., $B=(0), \Phi_{0}^{b}=0$ and Φ_{0}^{h} is positive definite relative to Ω.

For Siegel domains of type II (not necessarily symmetric nor homogeneous), an explicit formula for the Bergman kernel was given by Gindikin [1, Theorem 5.4] in terms of a certain integral over the dual cone of Ω (see also Korányi [3, Proposition 5.3]).

Every hermitian symmetric space of noncompact type can be written as G / K, where G is a connected semi-simple linear Lie group and K is a maximal compact subgroup of G. Let \mathfrak{g}, \mathfrak{f} be the Lie algebras of G, K and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the corresponding Cartan decomposition. We denote the complexifications of \mathfrak{g}, $\mathfrak{f}, \mathfrak{p}$ by $\mathfrak{g}_{\boldsymbol{c}}, \mathfrak{f}_{\boldsymbol{c}}, \mathfrak{p}_{\boldsymbol{c}}$, respectively. Then $\mathfrak{p}_{\boldsymbol{c}}$ is decomposed into the direct sum of two complex subalgebras \mathfrak{p}^{+}and \mathfrak{p}^{-}, which are ($\pm i$)-eigenspaces of the complex structure of \mathfrak{p}, respectively, and are abelian subalegbras of $\mathfrak{g}_{\boldsymbol{c}}$ normalized by \mathfrak{f}_{c}.

Let $G_{\boldsymbol{C}}$ be the complexification of G and let $P^{ \pm}, K_{\boldsymbol{C}}$ be the connected subgroups of $G_{\boldsymbol{C}}$ corresponding to $\mathfrak{p}^{ \pm},{ }_{\boldsymbol{f}}^{\boldsymbol{C}}$, respectively. It is known that the map $\mathfrak{p}^{+} \times K_{\boldsymbol{C}} \times \mathfrak{p}^{-} \rightarrow G_{\boldsymbol{C}}$, given by $\left(X^{+}, k, X^{-}\right) \rightarrow \exp X^{+} \cdot k \cdot \exp X^{-}$, is a holomorphic diffeomorphism onto a dense open subset $P^{+} K_{\boldsymbol{C}} P^{-}$of $G_{\boldsymbol{c}}$, which contains G. Therefore, every element $g \in P^{+} K_{\boldsymbol{C}} P^{-} \subset G_{\boldsymbol{C}}$ can be written in a unique way as

