Hiroshima Math. J. 13 (1983), 393–399

The Bergman kernel function for symmetric Siegel domains of type III

Dedicated to Professor K. Murata for his 60th birthday

Toru INOUE

(Received December 14, 1982)

It is known (Wolf-Korányi [7]) that every hermitian symmetric space of noncompact type has a standard realization as a Siegel domain of type III. In this note we give an explicit formula for the Bergman kernel function of such a symmetric Siegel domain.

The general definition of Siegel domain of type III was given by Pyatetskii-Shapiro [4] as follows. Let U, V and W be complex vector spaces. Let U_R be a real form of U, Ω an open convex cone in U_R , and B a bounded domain in W. Given any $w \in B$, let Φ_w be a semi-hermitian form of $V \times V$ to U, i.e., $\Phi_w = \Phi_w^h + \Phi_w^b$ where Φ_w^h is hermitian relative to the complex conjugation of U over U_R and Φ_w^b is symmetric C-bilinear. Then the domain

$$\{(u, v, w) \in U \oplus V \oplus W; \operatorname{Im} u - \operatorname{Re} \Phi_w(v, v) \in \Omega, w \in B\}$$

is called a Siegel domain of type III. Siegel domains of type II are degenerate special case W=0, i.e., B=(0), $\Phi_0^h=0$ and Φ_0^h is positive definite relative to Ω .

For Siegel domains of type II (not necessarily symmetric nor homogeneous), an explicit formula for the Bergman kernel was given by Gindikin [1, Theorem 5.4] in terms of a certain integral over the dual cone of Ω (see also Korányi [3, Proposition 5.3]).

Every hermitian symmetric space of noncompact type can be written as G/K, where G is a connected semi-simple linear Lie group and K is a maximal compact subgroup of G. Let g, t be the Lie algebras of G, K and g=t+p be the corresponding Cartan decomposition. We denote the complexifications of g, t, p by g_c , t_c , p_c , respectively. Then p_c is decomposed into the direct sum of two complex subalgebras p^+ and p^- , which are $(\pm i)$ -eigenspaces of the complex structure of p, respectively, and are abelian subalegbras of g_c normalized by t_c .

Let G_c be the complexification of G and let P^{\pm} , K_c be the connected subgroups of G_c corresponding to \mathfrak{p}^{\pm} , \mathfrak{k}_c , respectively. It is known that the map $\mathfrak{p}^+ \times K_c \times \mathfrak{p}^- \to G_c$, given by $(X^+, k, X^-) \to \exp X^+ \cdot k \cdot \exp X^-$, is a holomorphic diffeomorphism onto a dense open subset $P^+K_cP^-$ of G_c , which contains G. Therefore, every element $g \in P^+K_cP^- \subset G_c$ can be written in a unique way as