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The Bergman kernel function for symmetric
Siegel domains of type III
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It is known (Wolf-Koranyi [7]) that every hermitian symmetric space of
noncompact type has a standard realization as a Siegel domain of type III. In
this note we give an explicit formula for the Bergman kernel function of such a
symmetric Siegel domain.

The general definition of Siegel domain of type III was given by Pyatetskii-
Shapiro [4] as follows. Let U, V and W be complex vector spaces. Let UR be
a real form of U, Ω an open convex cone in UR, and B a bounded domain in W.
Given any weB, let Φw be a semi-hermitian form of Vx Fto 17, i.e., ΦW = Φ*,+
ΦJ, where Φ£ is hermitian relative to the complex conjugation of 17 over UR and
ΦJ, is symmetric C-bilinear. Then the domain

{(u, ϋ , w ) e ί / Θ F ® ^ ; I m u - R e Φ w ( v , υ)eΩ, weB}

is called a Siegel domain of type III. Siegel domains of type II are degenerate
special case W=0, i.e., B = (0), Φg = O and Φg is positive definite relative to Ω.

For Siegel domains of type II (not necessarily symmetric nor homogeneous),
an explicit formula for the Bergman kernel was given by Gindikin [1, Theorem
5.4] in terms of a certain integral over the dual cone of Ω (see also Koranyi [3,
Proposition 5.3]).

Every hermitian symmetric space of noncompact type can be written as GjK,
where G is a connected semi-simple linear Lie group and K is a maximal compact
subgroup of G. Let g, ϊ be the Lie algebras of G, K and g = ϊ + p be the cor-
responding Cartan decomposition. We denote the complexifications of g,
l» P by 9c> ϊc> Vc> respectively. Then p c is decomposed into the direct sum of
two complex subalgebras p + and p~, which are (±i)-eigenspaces of the complex
structure of p, respectively, and are abelian subalegbras of gc normalized by

ίc
Let Gc be the complexification of G and let P ± , Kc be the connected sub-

groups of Gc corresponding to p*, ! c , respectively. It is known that the map
p + xX cxp~->G c, given by (Z + , fe, Z~)->exρX+ -fc expZ", is a holomorphic
diffeomorphism onto a dense open subset P+KCP~ of Gc, which contains G.
Therefore, every element g eP+KcP~ <=GC can be written in a unique way as


