Existence of oscillatory solutions for fourth order superlinear ordinary differential equations

Takeshi Kura (Received February 12, 1983)

1. Introduction

In this paper we consider the fourth order Emden-Fowler type equation

$$(1) y^{(4)} = p(t)|y|^{\alpha} \operatorname{sgn} y,$$

where $\alpha > 1$ is a constant and p(t) is a positive continuous function on $[t_0, \infty)$, $t_0 > 0$. We are concerned with oscillatory and nonoscillatory properties of proper solutions of (1). A nontrivial real-valued solution y(t) of (1) is called proper if it exists on some half-line $[T_y, \infty) \subset [t_0, \infty)$. A proper solution is called oscillatory if it has arbitrarily large zeros; otherwise it is called nonoscillatory.

We denote by \mathscr{S} the set of all proper solutions of (1). From the viewpoint of oscillatory and nonoscillatory properties, \mathscr{S} can be decomposed into a disjoint union

$$\mathcal{S} = 0 \cup \mathcal{N}$$
.

where \mathcal{O} (resp. \mathcal{N}) is the set of all oscillatory (resp. nonoscillatory) solutions of (1). Moreover \mathcal{N} can be decomposed into a disjoint union

$$\mathcal{N} = \mathcal{N}_0 \cup \mathcal{N}_2 \cup \mathcal{N}_4,$$

where \mathcal{N}_0 , \mathcal{N}_2 and \mathcal{N}_4 denote the sets of nonoscillatory solutions y(t) satisfying,

$$y(t)y'(t) < 0$$
, $y(t)y''(t) > 0$, $y(t)y'''(t) < 0$,

$$v(t)v'(t) > 0$$
, $v(t)v''(t) > 0$, $v(t)v'''(t) < 0$

and

$$y(t)y'(t) > 0$$
, $y(t)y''(t) > 0$, $y(t)y'''(t) > 0$

respectively, for all sufficiently large t. The following results are known:

THEOREM A (Kiguradze [3]). $\mathcal{N}_0 \neq \emptyset$.

THEOREM B (Kitamura [6]). $\mathcal{N}_2 = \emptyset$ if and only if

(2)
$$\int_{t_0}^{\infty} t^{2+\alpha} p(t) dt = \infty.$$