The additive structure of $\tilde{K}\left(S^{4 n+3 /} Q_{t}\right)$

Kensô Fujil and Masahiro Sugawara
(Received December 25, 1982)

§ 1. Introduction

Let t be a positive integer and let Q_{t} be the group of order $4 t$ given by

$$
Q_{t}=\left\{x, y: x^{t}=y^{2}, x y x=y\right\}
$$

the group generated by two elements x and y with the relations $x^{t}=y^{2}$ and $x y x=y$, that is, Q_{t} is the subgroup of the unit sphere S^{3} in the quaternion field H generated by the two elements

$$
x=\exp (\pi \boldsymbol{i} / t) \quad \text { and } \quad y=\boldsymbol{j}
$$

and $Q_{1}=Z_{4}$ and Q_{t} for $t=2^{m-1}(m \geqq 2)$ is the generalized quaternion group which is denoted by H_{m} in [4].

Then, Q_{t} acts on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space H^{n+1} by the diagonal action, and we have the quotient manifold

$$
S^{4 n+3} / Q_{t} \text { of dimension } 4 n+3
$$

Some partial results on the reduced K-ring $\widetilde{K}\left(S^{4 n+3} / Q_{t}\right)$ of this manifold are obtained by [4], D. Pitt [14], T. Mormann [13] and K. Kojima. In this paper, we shall determine completely the additive structure of $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$.

Consider the complex representations a_{0}, a_{1} and b_{1} of Q_{t} given by

$$
\left\{\begin{array} { l }
{ a _ { 0 } (x) = 1 , } \\
{ a _ { 0 } (y) = - 1 , }
\end{array} \quad \left\{\begin{array} { l }
{ a _ { 1 } (x) = - 1 , } \\
{ a _ { 1 } (y) = \{ \begin{array} { l }
{ i } \\
{ \text { if } t \text { is odd, } } \\
{ 1 }
\end{array} \text { if } t \text { is even, } }
\end{array} \quad \left\{\begin{array}{l}
b_{1}(x)=\left(\begin{array}{cc}
x & 0 \\
0 & x^{-1}
\end{array}\right) \\
b_{1}(y)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{array}\right.\right.\right.
$$

and the elements

$$
\begin{equation*}
\alpha_{i}=\xi\left(a_{i}-1\right), \quad \beta_{1}=\xi\left(b_{1}-2\right) \quad \text { in } \quad \tilde{K}\left(S^{4 n+3} / Q_{t}\right) \quad \text { (cf. (3.3)) } \tag{1.1}
\end{equation*}
$$

where ξ is the natural ring homomorphism of the representation ring of Q_{t} to $\tilde{K}\left(S^{4 n+3} / Q_{t}\right)$. Furthermore, consider the following subgroups of Q_{t} :

$$
\begin{equation*}
G_{0}=Q_{r} \text { generated by } x^{q} \text { and } y, \quad G_{1}=Z_{q} \text { generated by } x^{2 r} \tag{1.2}
\end{equation*}
$$

where $t=r q, r=2^{m-1}, m \geqq 1$ and q is odd. Then, we have the ring homomorphisms

