HIROSHIMA MATH. J. 13 (1983), 507–521

The additive structure of $\tilde{K}(S^{4n+3}/Q_t)$

Kensô FUJII and Masahiro SUGAWARA (Received December 25, 1982)

§1. Introduction

Let t be a positive integer and let Q_t be the group of order 4t given by

$$Q_t = \{x, y: x^t = y^2, xyx = y\},\$$

the group generated by two elements x and y with the relations $x^t = y^2$ and xyx = y, that is, Q_t is the subgroup of the unit sphere S^3 in the quaternion field H generated by the two elements

$$x = \exp(\pi i/t)$$
 and $y = j$;

and $Q_1 = Z_4$ and Q_t for $t = 2^{m-1}$ $(m \ge 2)$ is the generalized quaternion group which is denoted by H_m in [4].

Then, Q_t acts on the unit sphere S^{4n+3} in the quaternion (n+1)-space H^{n+1} by the diagonal action, and we have the quotient manifold

$$S^{4n+3}/Q_t$$
 of dimension $4n+3$.

Some partial results on the reduced K-ring $\tilde{K}(S^{4n+3}/Q_t)$ of this manifold are obtained by [4], D. Pitt [14], T. Mormann [13] and K. Kojima. In this paper, we shall determine completely the additive structure of $\tilde{K}(S^{4n+3}/Q_t)$.

Consider the complex representations a_0 , a_1 and b_1 of Q_t given by

$$\begin{bmatrix} a_0(x) = 1, \\ a_0(y) = -1, \end{bmatrix} \begin{bmatrix} a_1(x) = -1, \\ i & \text{if } t \text{ is odd,} \\ 1 & \text{if } t \text{ is even,} \end{bmatrix} \begin{bmatrix} b_1(x) = \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix}, \\ b_1(y) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

and the elements

(1.1)
$$\alpha_i = \xi(a_i - 1), \quad \beta_1 = \xi(b_1 - 2) \quad \text{in} \quad \widetilde{K}(S^{4n+3}/Q_t) \quad (\text{cf. (3.3)}),$$

where ξ is the natural ring homomorphism of the representation ring of Q_t to $\tilde{K}(S^{4n+3}/Q_t)$. Furthermore, consider the following subgroups of Q_t :

(1.2)
$$G_0 = Q_r$$
 generated by x^q and y , $G_1 = Z_q$ generated by x^{2r} ,

where t = rq, $r = 2^{m-1}$, $m \ge 1$ and q is odd. Then, we have the ring homomorphisms