Notes on non-discrete subgroups of $\hat{U}(1, n; F)$

Shigeyasu KAMIYA (Received December 24, 1982)

1. Introduction

Let F denote the field R of real numbers, the field C of complex numbers, or the division ring of real quaternions K. Let $V = V^{1,n}(F)$ denote the (right) vector space F^{n+1} , together with the unitary structure defined by the F-Hermitian form

$$\Phi(z, w) = -\overline{z_0}w_0 + \overline{z_1}w_1 + \dots + \overline{z_n}w_n$$

for $z=(z_0,\,z_1,\ldots,\,z_n)$ and $w=(w_0,\,w_1,\ldots,\,w_n)$. An automorphism g of V, that is, an F-linear bijection of V onto V such that $\Phi(g(z),\,g(w))=\Phi(z,\,w)$ for $z,\,w\in V$, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1,\,n;\,F)$. Let $\{e_0,\,e_1,\ldots,\,e_n\}$ be the standard basis in V, and set $\hat{e}_0=(e_0-e_1)(1/\sqrt{2}),\,\hat{e}_1=(e_0+e_1)(1/\sqrt{2})$ and $\hat{e}_k=e_k$ for $2\leq k\leq n$. Let D be the matrix which changes the basis $\{e_0,\,e_1,\ldots,\,e_n\}$ into the basis $\{\hat{e}_0,\,\hat{e}_1,\ldots,\,\hat{e}_n\}$. Let $\hat{U}(1,\,n;\,F)=D^{-1}U(1,\,n;\,F)D$. $\hat{U}(1,\,n;\,F)$ is the automorphism group of the Hermitian form

$$\widetilde{\Phi}(z, w) = -(\overline{z_0}w_1 + \overline{z_1}w_0) + \overline{z_2}w_2 + \dots + \overline{z_n}w_n$$

for $z, w \in V$.

In the study of kleinian groups one is concerned with sufficient conditions for subgroups of Möbius transformations to be non-discrete (cf. [2]). Our purpose here is to give similar conditions for subgroups of $\hat{U}(1, n; F)$ to be non-discrete.

2. Preliminaries

Let $V_- = \{z \in V : \Phi(z, z) < 0\}$ and $\widehat{V}_- = D^{-1}(V_-)$. Obviously \widehat{V}_- is invariant under $\widehat{U}(1, n; F)$. Let P(V) be the projective space obtained from V, that is, the quotient space $V - \{0\}$ with respect to the equivalence relation: $u \sim v$ if there exists $\lambda \in F - \{0\}$ such that $u = v\lambda$. Let $P: V - \{0\} \rightarrow P(V)$ denote the projection map. We denote $P(\widehat{V}_-)$ by Σ . Let $\overline{\Sigma}$ be the closure of Σ in the projective space. We shall view that each element of $\widehat{U}(1, n; F)$ operates in $\overline{\Sigma}$. Let $G_0 = \{g \in \widehat{U}(1, n; F) : g(P(\widehat{e}_0)) = P(\widehat{e}_0)\}$, $G_{\infty} = \{g \in \widehat{U}(1, n; F) : g(P(\widehat{e}_1)) = P(\widehat{e}_1)\}$ and $G_{0,\infty} = G_0 \cap G_{\infty}$. The general form of elements in G_{∞} is shown in [1; Lemma]