On the q-dimension of a space of orderings and q-fans

Daiji KIJIMA, Mieo NISHI and Hirohumi UDA (Received May 19, 1983)

Let F be a formally real field, P a preordering and ρ a form over F. We shall say that a pair (ρ, P) is maximal if ρ is P-anisotropic and P is maximal among the preorderings over which ρ is anisotropic. For a given q-cone Q (cf. [7]) we shall define a preordering P(Q) and show that, P being a preordering, (ρ, P) is a maximal pair for some form ρ if and only if P is of finite index and of the form P = P(Q) for some q-cone Q; such a preordering will be called a q-fan in this paper.

The main purpose of this paper is to characterize a q-fan in terms of the q-dimension which is defined in §3, and give a reduction formula on q-dimensions (Theorem 3.6 and Theorem 3.9).

§1. Definitons and preliminaries

Throughout this paper, a field always means a formally real field. We denote by \dot{F} the multiplicative group of F. For a multiplicative subgroup P of \dot{F} , P is said to be a preordering of F if P is additively closed and $\dot{F}^2 \subset P$. We denote by X(F/P) the space of all orderings σ with $P(\sigma) \supset P$, where $P(\sigma)$ is the positive cone of σ . A valuation v of F is called a real valuation if its residue field is formally real. The objects: valuation ring, valuation ideal, group of units, residue field and group of values will be denoted by A, M, U, F_v and G respectively. A preordering P of F will be called compatible with a valuation v of F (or v is compatible with P) if $1+M \subset P$. If a preordering P of F is compatible with a valuation v, then $P \cap U$ is a union of cosets of M and $\bar{P} = \varphi(P \cap U)$ is a preordering of F_v , where φ is the canonical surjection: $A \rightarrow F_v$.

We shall say that two orderings σ , $\tau \in X(F/P)$ are connected in X(F/P) if $\sigma = \tau$ or there exists a fan of index 8 which contains σ and τ , and we denote the relation by $\sigma \sim \tau$. It is known that the relation \sim is an equivalence relation in X(F/P) ([4], Theorem 4.7). Each equivalence class of this relation is called a connected component of X(F/P). We say that a preordering P is connected if X(F/P) is connected. We denote by gr (X(F/P)) the translation group of X(F/P) in the terminology of [4], namely gr $(X(F/P)) = \{\alpha \in \chi(F/P) | \alpha \cdot X(F/P) = X(F/P)\}$ where $\chi(F/P) = \text{Hom}(\dot{F}/P, \{\pm 1\})$ is the character group of \dot{F}/P . For a preordering P of finite index, P is connected if and only if dim $\dot{F}/P \ge 3$ and dim gr $(X(F/P)) \ge 1$.