Self \boldsymbol{H}-equivalences of \boldsymbol{H}-spaces with applications to \boldsymbol{H}-spaces of rank 2

Norichika SAWASHITA
(Received April 15, 1983)

Introduction

The homotopy classification of spaces and maps is a subject of classical studies in algebraic topology. The group $\mathscr{E}(X)$ of self equivalences of a space X and the subgroup $\mathscr{E}_{H}(X)$ of self H-equivalences of an H-space X arose from such classification problem. For a based space $X, \mathscr{E}(X)$ is defined to be the set of all homotopy classes of homotopy equivalences of X to itself with group multiplication induced by the composition of maps; and it has been investigated by several authors including [2], [10], [19], [20] and [22], where calculating $\mathscr{E}(X)$ has been made with two exact sequences, originally due to Barcus-Barratt [2], given by either the skeletons or the Postnikov system of X. When X is an H-space, $\mathscr{E}_{H}(X)$ is defined to be the subgroup of $\mathscr{E}(X)$ consisting of H-maps, which has been studied in [13] and [24] for instance. But much less examples of calculation are known; in fact, when X is a finite 1 -connected H-complex (H-space being a $C W$-complex), $\mathscr{E}_{H}(X)$ has determined only in case that X is of rank $\leqq 2$ with no torsion in homology.

This paper is divided into two parts. In Part I, we present an exact sequence for calculating $\mathscr{E}_{H}(X)$ of a 1 -connected H-complex X in terms of its Postnikov system. The aim of Part II is the determination of $\mathscr{E}_{H}\left(G_{2, b}\right)$ made use of the exact sequence given in Part I, where $G_{2, b}(-2 \leqq b \leqq 5)$ are of rank 2 with torsion in homology given by Mimura-Nishida-Toda [17].

Let X be a 1 -connected H-complex, and consider the Postnikov system $\left\{X_{n}\right\}$ of X with obvious map $f_{n}: X \rightarrow X_{n}$ and usual fiber sequence

$$
\begin{equation*}
\Omega X_{n-1} \xrightarrow{\Omega k} K\left(\pi_{n}, n\right) \xrightarrow{i_{n}} X_{n} \xrightarrow{p_{n}} X_{n-1} \xrightarrow{k} K\left(\pi_{n}, n+1\right) \tag{1}
\end{equation*}
$$

(Ω is the loop functor)
where $\pi_{n}(X)$ is sometimes abbreviated to π_{n} and the Postnikov invariant k^{n+1} to k . Then, the theorem of J. D. Stasheff [26, Th. 5] states that X_{n} is an H-space in such a way that all the structure maps f_{n}, k, p_{n} and i_{n} are H-maps; and we have proved in the previous paper [25, Th. 1.3] that
(2) f_{n} induces a homomorphism $f_{n 1}: \mathscr{E}_{H}(X) \rightarrow \mathscr{E}_{H}\left(X_{n}\right)$ which is monomorphic if $n \geqq \operatorname{dim} X$ and isomorphic if $n \geqq 2 \operatorname{dim} X$.

