On the group of self-homotopy equivalences of principal S³-bundles over spheres

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Mamoru MIMURA and Norichika SAWASHITA (Received January 14, 1984)

Introduction

For any (based) space X, the set $\mathscr{E}(X)$ of all homotopy classes of homotopy equivalences of X to itself forms a group under the composition of maps. The group $\mathscr{E}(X)$ has been studied by several authors. In particular, in case when X is a principal S³-bundle over Sⁿ, the group $\mathscr{E}(X)$ is already known for X = SU(3), Sp(2) by [10], for $X = S^3 \times S^n$ by [13] and for $X = E_{k\omega}$ by J. W. Rutter [11], where $E_{k\omega}$ is the principal S³-bundle over S⁷ with characteristic class $k\omega \in \pi_6(S^3)$, ω a generator of $\pi_6(S^3) = Z_{12}$.

The purpose of this note is to study groups $\mathscr{E}(X)$ for principal S³-bundles over spheres. Our main result is stated as follows:

THEOREM 3.1. Let E_f be the principal S^3 -bundle over S^n $(n \ge 5)$ with characteristic class $f \in \pi_{n-1}(S^3)$. Assume that $\omega \circ S^3 f \in f_* \pi_{n+2}(S^{n-1})$. Then we have the following exact sequence:

$$0 \to \pi_{n+3}(E_f) \to \mathscr{E}(E_f) \to \mathscr{E}(S^3 \cup f^n) \to 1,$$

where $S^3 \cup_f e^n$ is the mapping cone of f.

The group $\mathscr{E}(S^3 \cup_f e^n)$ is given in [10, Th. 3.15] up to extension (see (2.2)), and the homotopy group $\pi_{n+3}(E_f)$ is studied for some f in §3.

Throughout this note, all spaces have base points, and all maps and homotopies preserve base points. For given spaces X and Y, we denote by [X, Y] the set of (based) homotopy classes of maps of X to Y, and by the same letter a map $f: X \rightarrow Y$ and its homotopy class $f \in [X, Y]$.

§1. The homomorphism ϕ and its kernel

Throughout this note, let $f \in \pi_{n-1}(S^3)$ for $n \ge 5$ be a given element, and let $X = E_f$ denote the principal S^3 -bundle over S^n with characteristic class f and $K = S^3 \cup_f e^n$ the mapping cone of f. Then by James-Whitehead [8], X has a cell structure given by