The Riemann-Hurwitz relation, parallel slit covering map, and continuation of an open Riemann surface of finite genus

Dedicated to Prof. M. Ohtsuka on his 60th birthday

Masakazu SHIBA (Received January 5, 1984)

Introduction

Riemann proved, in 1851, the famous mapping theorem which is now named after him. It is the fountainhead of the study of conformal mapping. As its generalization, Schottky [32] suggested in his thesis that every finitely connected plane domain is mapped conformally onto a parallel slit plane. The first complete proof of this fact was due to Cecioni [4] and Hilbert [12]. Hilbert also outlined a proof for the case of infinite connectivity. Courant and Koebe carried out Hilbert's plan and, in fact, they finally showed that an arbitrary planar (=schlichtartig) Riemann surface can be mapped conformally onto a parallel slit plane. The mapping function is furnished by a "Strömungsfunktion" which is derived from a dipole "Strömungspotential" (see [14], p. 454 and p. 484).

In 1950, Nehari [23] first succeeded in generalizing the above result to (the interior of) compact bordered Riemann surfaces. Later Kusunoki [18] proved the same theorem again as an application of his theory of Abelian integrals on open Riemann surfaces. Mori [21] and Mizumoto [20] dealt with the general case — surfaces of finite genus but with infinitely many ideal boundary components.

Every author mentioned above at first constructed a single-valued meromorphic function on the surface which gives rise to a parallel slit (covering) mapping. Such a function is immediately recognized as a natural generalization of a "Strömungsfunktion". For this reason, we shall refer to it as an *S*-function. The existence of a non-constant *S*-function on an arbitrary surface of finite genus is assured by e.g., the Riemann-Roch theorem (on open surfaces). It is known that every non-constant *S*-function defines a finite-sheeted covering surface of the extended complex plane \hat{C} .

Mizumoto's work as well as Mori's concerning the general case left some important problems open, however. The geometric structure of the covering determined by an S-function has not been fully analyzed. For instance, they asserted nothing about the branch points. In the beginning of this paper we