On a product formula for a class of nonlinear evolution equations

Tetsuya KOYAMA (Received Spetember 1, 1983)

§0. Introduction

This work is concerned with the initial value problem of the form

(IVP;
$$u_0$$
) $(d/dt)u(t) + \partial \phi u(t) \ni Bu(t), \quad t > 0,$
 $u(0) = u_0,$

where φ is a proper lower semicontinuous (l.s.c.) convex functional on an abstract real Hilbert space **H**, $\partial \varphi$ is its subdifferential and *B* is a single-valued operator in **H** with domain D(B) containing the effective domain $D(\varphi)$ of φ . Initial value problems of this type have been studied by many authors (e.g. [5, 11, 12, 13]).

Let $\{S(\tau); 0 \le \tau < \infty\}$ be the nonlinear contraction semigroup on $\overline{D(\varphi)}$ generated by $-\partial\varphi$, and $\{V(\tau); 0 \le \tau < \infty\}$ a one-parameter family of single-valued operators $V(\tau)$ in **H** with $D(V(\tau)) \supset D(B)$ such that $\tau^{-1}(V(\tau)-1) \rightarrow B$ as $\tau \downarrow 0$ in a certain sense. (However the family $\{V(\tau)\}$ is not assumed to be a contraction semigroup on $\overline{D(B)}$.) In this paper it is our main interest to establish an existence theorem for (IVP; u_0) by showing that

(0.1)
$$u_n(t) = [V(\tau(n))S(\tau(n))P]^{[t/\tau(n)]}u_0 \longrightarrow u(t) \text{ in } \mathbf{H} \text{ as } n \to \infty$$

and

$$\varphi(S(\tau(n))Pu_n(t)) \longrightarrow \varphi(u(t))$$
 in **R** as $n \to \infty$

for a suitable subsequence $\{\tau(n)\}$ with $\tau(n) \downarrow 0$ as $n \to \infty$, where P is the projection from H onto $\overline{D(\varphi)}$ and [s] denotes the greatest integer in $s \in \mathbf{R}$.

In case -B is the subdifferential of a proper l.s.c. convex functional φ on H, i.e. $B = -\partial \varphi$, it was shown by Kato and Masuda [7] that

$$[S'(\tau)P'S(\tau)P]^{[t/\tau]}u_0 \longrightarrow u(t) \text{ in } \mathbf{H} \text{ as } \tau \downarrow 0 \text{ for } t \in [0, \infty)$$

and the convergence is uniform on [0, T] for each $0 < T < \infty$, where $\{S'(\tau); 0 \le \tau < \infty\}$ is the nonlinear contraction semigroup on $\overline{D(\psi)}$ generated by $-\partial \psi$ and P' the projection from **H** onto $\overline{D(\psi)}$. This result is a nonlinear analogue of Trotter's product formula for linear nonnegative self-adjoint operators (cf. [2, 6]) and the family $\{T(\tau); 0 \le \tau < \infty\}$ defined by $T(t)u_0 = u(t), u_0 \in \overline{D(\phi) \cap D(\psi)}$, gives