Study of the behavior of logarithmic potentials by means of logarithmically thin sets

Yoshihiro MIZUTA

(Received September 5, 1983)

1. Introduction and statement of results

Let R^n $(n \ge 2)$ be the *n*-dimensional euclidean space. For a nonnegative (Radon) measure μ on R^n , we set

$$L\mu(x) = \int \log \frac{1}{|x-y|} d\mu(y)$$

if the integral exists at x. We note here that $L\mu$ is not identically $-\infty$ if and only if

(1)
$$\int \log (1+|y|)d\mu(y) < \infty.$$

Denote by B(x, r) the open ball with center at x and radius r. For $E \subset B(0, 2)$, define

$$C(E) = \inf \mu(R^n),$$

where the infimum is taken over all nonnegative measures μ on \mathbb{R}^n such that S_{μ} (the support of μ) $\subset B(0, 4)$ and

$$\int \log \frac{8}{|x-y|} d\mu(y) \ge 1 \quad \text{for every} \quad x \in E.$$

If $E \subset B(x^0, 2)$, then we set

$$C(E) = C(\{x - x^0; x \in E\}).$$

One notes here that this is well defined, i.e., independent of the choice of x^0 .

Throughout this paper let k be a positive and nonincreasing function on the interval $(0, \infty)$ such that

$$k(r) \leq Kk(2r) \quad \text{for any} \quad r, 0 < r < 1,$$

where K is a positive constant independent of r. A set E in \mathbb{R}^n is said to be k-logarithmically thin, or simply k-log thin, at $x^0 \in \mathbb{R}^n$ if

$$\sum_{j=1}^{\infty} k(2^{-j}) C(E'_j) < \infty,$$

where $E'_{j} = \{x \in B(x^{0}, 2) - B(x^{0}, 1); x^{0} + 2^{-j}(x - x^{0}) \in E\}$. If $k(r) = \log r^{-1}$ for