Study of the behavior of logarithmic potentials by means of logarithmically thin sets

Yoshihiro Mizuta
(Received September 5, 1983)

1. Introduction and statement of results

Let R^{n} ($n \geqq 2$) be the n-dimensional euclidean space. For a nonnegative (Radon) measure μ on R^{n}, we set

$$
L \mu(x)=\int \log \frac{1}{|x-y|} d \mu(y)
$$

if the integral exists at x. We note here that $L \mu$ is not identically $-\infty$ if and only if

$$
\begin{equation*}
\int \log (1+|y|) d \mu(y)<\infty \tag{1}
\end{equation*}
$$

Denote by $B(x, r)$ the open ball with center at x and radius r. For $E \subset B(0$, 2), define

$$
C(E)=\inf \mu\left(R^{n}\right),
$$

where the infimum is taken over all nonnegative measures μ on R^{n} such that S_{μ} (the support of $\mu) \subset B(0,4)$ and

$$
\int \log \frac{8}{|x-y|} d \mu(y) \geqq 1 \quad \text { for every } \quad x \in E .
$$

If $E \subset B\left(x^{0}, 2\right)$, then we set

$$
C(E)=C\left(\left\{x-x^{0} ; x \in E\right\}\right)
$$

One notes here that this is well defined, i.e., independent of the choice of x^{0}.
Throughout this paper let k be a positive and nonincreasing function on the interval $(0, \infty)$ such that

$$
k(r) \leqq K k(2 r) \quad \text { for any } \quad r, 0<r<1,
$$

where K is a positive constant independent of r. A set E in R^{n} is said to be k logarithmically thin, or simply k-log thin, at $x^{0} \in R^{n}$ if

$$
\sum_{j=1}^{\infty} k\left(2^{-j}\right) C\left(E_{j}^{\prime}\right)<\infty,
$$

where $E_{j}^{\prime}=\left\{x \in B\left(x^{0}, 2\right)-B\left(x^{0}, 1\right) ; x^{0}+2^{-j}\left(x-x^{0}\right) \in E\right\}$. If $k(r)=\log r^{-1}$ for

