Picard principle for linear elliptic differential operators

Hideo IMAI

(Received March 5, 1984)

Take the punctured Euclidean unit *n*-ball $\Omega: 0 < |x| < 1$ $(x = (x_1, \dots, x_n), n \ge 2)$. Throughout this paper we regard Ω as the subspace of the punctured Euclidean *n*-space $M: 0 < |x| < \infty$, so that the topological notions such as boundaries and closures etc. are considered relative to the "whole" space M. Hence |x| = 1 is the boundary $\partial \Omega$ of Ω , x = 0 is the ideal boundary of Ω , and the relative closure $\overline{\Omega}$ of Ω is $\Omega \cup \partial \Omega$. Consider an elliptic partial differential equation

(1)
$$Lu(x) \equiv \Delta u(x) + b(x) \cdot \nabla u(x) + c(x)u(x) = 0$$

on Ω , where $\Delta = \sum_{i=1}^{n} \partial^2 / \partial x_i^2$, $\mathcal{V} = (\partial / \partial x_1, \dots, \partial / \partial_{x_n})$, the inner product, and the vector field $b(x) = (b_1(x), \dots, b_n(x))$ is of class C^2 on $\overline{\Omega} = \{0 < |x| \le 1\}$ and the function c(x) of class C^1 on $\overline{\Omega}$ which may not be of constant sign. Thus the operator L is smooth on $\overline{\Omega}$ and especially on $\partial \Omega$: |x| = 1, but may, and actually will, have singularities at x = 0. We are interested in the class \mathcal{P} of the nonnegative solutions of (1) on Ω with vanishing boundary values on $\partial \Omega$. It is convenient to consider the normalized subclass \mathcal{P}_1 of \mathcal{P} given by $\mathcal{P}_1 = \{u \in \mathcal{P}: \int_{\partial\Omega} (\partial / \partial n_x) u(x) dS_x = 1\}$, where $(\partial / \partial n_x) u(x)$ denotes the inner normal derivative of u(x) at each point of $\partial\Omega$ whose existence is well known since u(x) vanishes on $\partial\Omega$ (cf. e.g. Miranda [6]) and dS the surface element on $\partial\Omega$. Since \mathcal{P}_1 is convex, we can consider the set ex. \mathcal{P}_1 of extreme points of \mathcal{P}_1 and the cardinal number $\#(ex, \mathcal{P}_1)$ of ex. \mathcal{P}_1 , which will be referred to as the *Picard dimension* of L at x=0, dim L in notation:

(2)
$$\dim L = \sharp(\operatorname{ex}, \mathscr{P}_1).$$

We are particularly interested in the case dim L=1. In this case we say, after Bouligand, that the *Picard principle* is valid for L at x=0. We will give a sufficient condition for its validity in terms of the orders of the growth of coefficients of L.

It can happen that dim L=0. To prevent this trivial case we need to consider the existence of "Green's function" on Ω . For any point y fixed in Ω take a ball U: |x-y| < a in Ω . If U is sufficiently small, then the Green's function (with respect to the Dirichlet problem) $g_U(x, y)$ on U for (1) with its pole y exists (cf. e.g. [6]). Consider a positive solution u(x) of (1) on $\Omega - \{y\}$ satisfying the following two conditions: (i) $u(x) - g_U(x, y)$ is a solution of (1) on U; (ii) if v(x)