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Hideo IMAI

(Received March 5, 1984)

Take the punctured Euclidean unit n-ball Ω: 0 < | x | < l (x = (x1, , xn), n>2).

Throughout this paper we regard Ω as the subspace of the punctured Euclidean

n-space M: 0 < | x | < o o , so that the topological notions such as boundaries and

closures etc. are considered relative to the "whole" space M. Hence |x| = l is

the boundary dΩ of Ω, x = 0 is the ideal boundary of Ω, and the relative closure

Ω of Ω is Ω U dΩ. Consider an elliptic partial differential equation

(1) Lu(x) = Au(x) + b(x)-Fu(x) + c(x)u(x) = 0

on Ω, where A = Σ?=i ^2/dxf, ^ —(dldxί,-", d/dXn), the inner product, and the

vector field 6(x) = (fe1(jc), , bn(x)) is of class C2 on Ω = { 0 < | x | < l } and the

function c(x) of class C1 on Ω which may not be of constant sign. Thus the

operator L is smooth on Ω and especially on dΩ: |x| = l, but may, and actually

will, have singularities at x = 0. We are interested in the class & of the non-

negative solutions of (1) on Ω with vanishing boundary values on dΩ. It is con-

venient to consider the normalized subclass ^ of & given by 0>

1 = {ue0>:

\ (d/dnx)u(x)dSx=l}9 where (d/dnx)u(x) denotes the inner normal derivative of
JdΩ

u(x) at each point of dΩ whose existence is well known since u(x) vanishes on

dΩ (cf. e.g. Miranda [6]) and dS the surface element on dΩ. Since ^ is convex,

we can consider the set ex. &x of extreme points of &x and the cardinal number

#(ex. ^x) of ex. ^ t , which will be referred to as the Picard dimension of L at

x = 0, dim L in notation :

(2) dim L = #(ex. ^ ) .

We are particularly interested in the case d i m L = l . In this case we say, after

Bouligand, that the Picard principle is valid for L at x = 0. We will give a suf-

ficient condition for its validity in terms of the orders of the growth of coefficients

of L.

It can happen that dim L = 0. To prevent this trivial case we need to consider

the existence of "Green's function" on Ω. For any point y fixed in Ω take a ball

U: \x — y\<a in Ω. If U is sufficiently small, then the Green's function (with

respect to the Dirichlet problem) ^ ( x , y) on U for (1) with its pole y exists (cf.
e g [6]). Consider a positive solution u(x) of (1) on Ω — {y} satisfying the

following two conditions: (i) u(x) — gv(x9 y) is a solution of (1) on U; (ii) if v(x)


