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Take the punctured Euclidean unit n-ball Q: 0<|x|<1 (x=(x,--*, x,), n>2).
Throughout this paper we regard Q as the subspace of the punctured Euclidean
n-space M:0<|x| <o, so that the topological notions such as boundaries and
closures etc. are considered relative to the “whole’” space M. Hence |x|=1 is
the boundary 0Q of Q, x=0 is the ideal boundary of Q, and the relative closure
Q of Qis QU dQ. Consider an elliptic partial differential equation

)) Lu(x) = Au(x) + b(x)-Fu(x) + c(x)u(x) =0

on Q, where 4=3", 0%/0x?, V =(0/0xy,---, 0/0,,), - the inner product, and the
vector field b(x)=(b,(x), -+, b,(x)) is of class C2 on @={0<|x|<1} and the
function ¢(x) of class C! on € which may not be of constant sign. Thus the
operator L is smooth on Q and especially on 0Q: |x|=1, but may, and actually
will, have singularities at x=0. We are interested in the class £ of the non-
negative solutions of (1) on Q with vanishing boundary values on 6Q. It is con-
venient to consider the normalized subclass &, of 2 given by 2, ={ue?:

S (0/dnJu(x)dS,.=1}, where (0/0n,)u(x) denotes the inner normal derivative of
on

u(x) at each point of 02 whose existence is well known since u(x) vanishes on
0Q (cf. e.g. Miranda [6]) and dS the surface element on dQ. Since £, is convex,
we can consider the set ex. 2, of extreme points of £, and the cardinal number
#(ex. 2,) of ex. #;, which will be referred to as the Picard dimension of L at
x=0, dim L in notation:

2) dim L = #(ex. #,).

We are particularly interested in the case dim L=1. In this case we say, after
Bouligand, that the Picard principle is valid for L at x=0. We will give a suf-
ficient condition for its validity in terms of the orders of the growth of coefficients
of L.

It can happen that dim L=0. To prevent this trivial case we need to consider
the existence of “Green’s function’ on Q. For any point y fixed in Q take a ball
U:|x—yl<a in Q. If U is sufficiently small, then the Green’s function (with
respect to the Dirichlet problem) gy(x, y) on U for (1) with its pole y exists (cf.
e.g. [6]). Consider a positive solution u(x) of (1) on Q—{y} satisfying the
following two conditions: (i) u(x)—gy(x, y) is a solution of (1) on U; (ii) if v(x)



