HIROSHIMA MATH. J. **14** (1984), 489–509

A product formula approach to first order quasilinear equations

Dedicated to Professor Isao Miyadera on his 60th birthday

Yoshikazu KOBAYASHI (Received June 23, 1983)

Introduction

This paper is concerned with the Cauchy problem (hereafter called (CP)) for the scalar quasilinear equation

(DE)
$$u_t + \sum_{i=1}^{d} (\phi_i(u))_{x_i} = 0$$
 for $t > 0, x \in \mathbf{R}^d$

where $\phi = (\phi_1, \phi_2, ..., \phi_d)$ is a smooth **R**^d-valued function on **R** such that $\phi(0) = 0$.

We treat this problem from the point of view of the theory of nonlinear semigroups and establish a new operator theoretic algorithm for solving the problem in conjunction with product formulae. It is well-known that solutions of (CP)can be constructed by both the method of vanishing viscosity and the finite difference method. Recently, Giga and Miyakawa proposed in [7] a new method for constructing solutions of (CP) via the iterative scheme

$$(0.1) u_{k+1} = C_h u_k, \quad k = 0, 1, 2, \dots,$$

where the operators C_h , h > 0, are defined by

(0.2)
$$(C_h u)(x) = \int_R 2^{-1} (\operatorname{sign} (u(x - h\phi'(\xi)) - \xi) + \operatorname{sign} (\xi)) d\xi$$

for $x \in \mathbf{R}^d$, where h stands for a mesh size of time difference.

Let u(t, x) be a function of $(t, x) \in (0, \infty) \times \mathbb{R}^d$ and $f(t, x, \xi)$ the function of $(t, x, \xi) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}$ defined by

$$f(t, x, \xi) = 2^{-1}(\operatorname{sign}(u(t, x) - \xi) + \operatorname{sign}(\xi)),$$

where ξ is understood to mean a parameter varying over **R**. Then the function u and f satisfies the relation

$$u(t, x) = \int_{\mathbf{R}} f(t, x, \xi) d\xi$$

and

This reseach was supported in part by Grant-in-Aid for Scientific Reseach (No. 57740079), Ministry of Education.