Positive solutions of linear and quasilinear elliptic equations in unbounded domains

Yasuhiro FURUSHO

(Received September 5, 1984)

1. Introduction

Let Ω be an exterior domain in \mathbb{R}^N , $N \ge 2$, with smooth boundary $\Gamma = \partial \Omega$ and let \mathfrak{D} and B denote, respectively, an elliptic differential operator and a boundary operator defined by

(1.1)
$$\mathfrak{D} = \sum_{i,j=1}^{N} a_{ij}(x)\partial^2/\partial x_i \partial x_j + \sum_{i=1}^{N} b_i(x)\partial/\partial x_i, \quad x \in \Omega,$$

and

(1.2)
$$B = \alpha(x)\partial/\partial\beta + (1-\alpha(x)), \quad x \in \Gamma,$$

where $\partial/\partial\beta$ is the directional derivative in the direction of a vector β prescribed on Γ . We are concerned with the following linear and quasilinear boundary value problems:

(A)
$$-\mathfrak{D}u + c(x)u = \lambda m(x)u$$
 in Ω , $Bu = 0$ on Γ ,

(B)
$$-\mathfrak{D}u + c(x)u = \lambda m(x)u^{\gamma}$$
 in Ω , $Bu = 0$ on Γ ,

where c(x) and m(x) are given functions, λ is a real parameter and γ is a nonzero constant with $\gamma \neq 1$. We allow Γ to be empty, in which case Ω is the entire space \mathbb{R}^N and the boundary condition in (A) or (B) is void.

The objective of this paper is twofold. First, we study the existence and asymptotic behavior of positive functions h which satisfy the differential inequality

(1.3)
$$-\mathfrak{D}h + c(x)h \ge \lambda m(x)h \quad \text{in } \Omega$$

and have minimal order of growth at infinity. Such an h is called a minimal λ -superharmonic function, and the totality of λ -superharmonic functions is denoted by $SH(\lambda)$. An analysis of some particular cases of (1.3) ([10]) shows that the asymptotic behavior of λ -superharmonic functions is in general very complicated. So, we restrict our attention to the situations in which (i) all h in $SH(\lambda)$ converge to zero as $|x| \rightarrow \infty$; (ii) all h in $SH(\lambda)$ are bounded both above and below by positive constants; (iii) all h in $SH(\lambda)$ tend to infinity as $|x| \rightarrow \infty$, and attempt to obtain conditions for such situations to occur. For this purpose a