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Quadratic extensions of quasi-pythagorean fields
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Let F be a field of characteristic different from 2 and K be a quadratic
extension of F. We let N: K-+F be the norm map and R(F) (resp. R(K)) be
Kaplansky's radical of F (resp. K). Formerly we proposed the following con-
jecture: Is N~l(R(F)) equal to F-R(K)1 In [3], we gave a necessary and
sufficient condition under which both F and K are quasi-pythagorean (see §1)
and showed that the conjecture is true in this case.

The purpose of this paper is to show that the conjecture is true, whenever
F is quasi-pythagorean and satisfies the finiteness condition for the space of
orderings (see Theorem 6.1).
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§ 1. Quasi-pythagorean fields

Throughout this paper, F shall be a field of characteristic not equal to 2.
First we recall a few basic notation. For a field F, WF shall denote the Witt
ring of F consisting of the Witt classes of all quadratic forms over F, and 7F
shall denote the fundamental ideal in WF consisting of the Witt classes of all
even-dimensional forms. The notation <#!,...,#„> shall mean the diagonal
form a^x\ H h anx%, where «,-£/:= F\{0}. The nth power of the fundamental
ideal shall be denoted by /WF; it is additively generated by the n-fold Pfister forms

«α l 5...,«W>>' = <15 Λι>Θ-"®<l, any. For a form /=<α lv.., 0rt>> we define
DF(f) to be the set {Σ^xf^O; χf e F}. We note that if n^2, then Dpζa^..., any =
/)F<r1α1,..., rnany for ^-el^F), where R(F) is Kaplansky's radical of F. We also
note that, for a Pfister form p and xeF, xeDF(p) if and only if p®C~*^> is
isotropic.

As in [4], a field F is called quasi-pythagorean if R(F) = DF(2). It can be
shown that F is quasi-pythagorean if and only if I2F is torsion free. In [3], the
subgroup Ha of F is defined by Ha = {xeF; DF<1, -x>DF<l, -ax> = F} and, in
case F is quasi-pythagorean, it is shown that Ha is a subgroup of DF<1, α>.

PROPOSITION 1.1. Let F be a quasi-pythagorean field and K = F(^/a) be a
quadratic extension of F. Then the following statements are equivalent:

(1) N~l(R(F)) = F-R(K), where N is the norm map N: -»F.


