Birational-integral extensions and differential modules

Mitsuo Kanemitsu and Ken-ichi Yoshida (Received August 30, 1984)

Throughout this paper, a ring will mean a commutative Noetherian ring with identity.

Let R be a Noetherian domain and let \overline{R} be the integral closure of R in its quotient field. An intermediate ring between R and \overline{R} will be called a *birational-integral extension* of R. Let A be a birational-integral extension of R. We assume that A is a finite R-module. Let ${}_{A}^{+}R$ be the seminormalization of R in A. If ${}_{A}^{+}R = A$, then we say that the extension A/R is a cuspidal type.

In this paper, we shall prove that a cuspidal type extension is obtained by a finite chain of constant subrings of some derivations.

Let $C = {}^{+}_{A}R$ and let I_{C} be the kernel of the canonical homomorphism

$$\Psi_C: C \otimes_R C \longrightarrow C.$$

Then I_C is generated by $\{\alpha\otimes 1-1\otimes\alpha/\alpha\in C\}$ and C/R is a cuspidal type extension. For any ring S, we put $S_{red}=S/nil(S)$ where nil(S) denotes the nilradical of S. Let $\overline{\varphi}_A$ be a module-homomorphism of A to $(A\otimes_R A)_{red}$ over R defined by $\overline{\varphi}_A(\alpha)=\alpha\otimes 1-1\otimes\alpha$ mod $nil(A\otimes_R A)$. In [2], M. Manaresi proved that $\ker \overline{\varphi}_A= {}^{\omega}_A R$ where ${}^{\omega}_A R$ is the weak normalization of R in A. In our situation, since $C={}^{\omega}_C R$, we have $C={}^{\omega}_C R$. By this result, each $\alpha\otimes 1-1\otimes\alpha$ ($\alpha\in C$) is nilpotent and so I_C is nilpotent, say $I_C^{q+1}=(0)$ for some integer q. Then we see that the q-th order differential module $\Omega_R^q(C)=I_C/I_C^{q+1}$ of C over R is isomorphic to I_C and there exists the canonical q-th order derivation Δ_q of C over R to $\Omega_R^q(C)$ defined by $\Delta_q(\alpha)=\alpha\otimes 1-1\otimes\alpha$. We see that $\Delta_q^{-1}(0)$ is a subring of C containing R.

In the paper [1], J. Lipman introduced the following notion: For a ring S and a subring T of S, we say that

$$_{S}^{*}T = \{ \alpha \in S/\alpha \otimes 1 = 1 \otimes \alpha \text{ in } S \otimes_{T} S \}$$

is the strict closure of T in S. If $T = {}^*ST$, then we say that T is strictly closed in S.

Using this notion, we have:

PROPOSITION 1. Let R, C and Δ_q be as above, and let N be a $C \otimes_R C$ -submodule of $\Omega_R^q(C)$ (for example, I_C^t , where t is an integer). Then $\Delta_q^{-1}(N)$ is strictly closed in C.