On homology of the double covering over the exterior of a surface in 4-sphere

Mituhiro SEKINE (Received May 19, 1990)

Introduction.

We consider a closed connected surface F embedded in a homology 4sphere M^4 with normal bundle N(F). Of course N(F) always exists as a regular neighborhood of F in the smooth or PL category. The exterior X of Fis defined by $X = M^4 - \operatorname{Int} N(F)$. If F is non-orientable (resp. orientable), then $H_1(X) \cong H^2(F) \cong \mathbb{Z}_2$ (resp. \mathbb{Z}) by the Alexander duality, and we have the double covering space X_2 over X associated with the kernel of the non-trivial homomorphism $\pi_1(X) \to \mathbb{Z}_2$ through the Hurewicz homomorphism $\pi_1(X)$ $\to H_1(X)$. In this paper, we determine the finitely generated Λ_2 -modules $H_*(X_2)$ and $H_*(X_2, \partial X_2)$. Here Λ_2 denotes the integral group ring of \mathbb{Z}_2 which is generated by t, and t acts on these homology groups by the induced isomorphism of the covering transformation.

THEOREM 1. If F is non-orientable, we have the following.

(1) $H_1(X_2) \cong H_1(X_2, \partial X_2) \cong \bigoplus_{i=1}^n \Lambda_2/(t+1, c_i)$, where $c_i \ (1 \le i \le n)$ are odd integers.

(2) $H_2(X_2) \cong H_2(X_2, \partial X_2) \cong \Lambda_2^{g-1} \oplus \Lambda_2/(t+1) \oplus H_1(X_2)$, where g is the genus of F.

(3) $H_i(X_2) = 0$ $(i \ge 3), H_i(X_2, \partial X_2) = 0$ $(i = 0, 3 \text{ or } i \ge 5),$ and $H_0(X_2) \cong H_4(X_2, \partial X_2) \cong \Lambda_2/(t-1).$

THEOREM 1'. If F is orientable, we have the following.

(1') $H_1(X_2, \ \partial X_2) \cong \bigoplus_{i=1}^n \Lambda_2/(t+1, \ c_i)$ and $H_1(X_2) \cong \Lambda_2/(t-1)$

 \oplus H₁(X₂, ∂ X₂), where c_i (1 ≤ i ≤ n) are odd integers.

(2) $H_2(X_2) \cong H_2(X_2, \partial X_2) \cong \Lambda_2^{2g} \oplus H_1(X_2, \partial X_2)$, where g is the genus of F.

(3') $H_i(X_2) = 0$ $(i \ge 3)$, $H_i(X_2, \partial X_2) = 0$ $(i = 0 \text{ or } i \ge 5)$, and $H_0(X_2) \cong H_3(X_2, \partial X_2) \cong H_4(X_2, \partial X_2) \cong \Lambda_2/(t-1)$.

REMARK. In the case that $\pi_1(X)$ is an abelian group, the above theorems are well known because F is stably unknotted (cf. [2]).