Spherical hyperfunctions on the tangent space of symmetric spaces

Atsutaka Kowata

(Received May 11, 1990)

Introduction

Let G be connected semisimple Lie group, σ an involutive automorphism of G and H an open subgroup of fixed points of σ . Then G/H is called a semisimple symmetric space and the tangent space at the origin of G/H is identified with a complement q of h in g, where g and h are the Lie algebras corresponding to G and H, respectively.

In this paper, we consider spherical hyperfunctions on q that are Hinvariant and simultaneously eigen hyperfunctions on q. There have appeared several papers dealing with spherical functions on q ([1], [2], [3], [5], [9], [10]). In his paper [2], van Dijk listed up spherical distributions for the rank 1 case. On the other hand, in his paper [1], Cerezo determined the dimension of O(p, q) (or $SO_0(p, q)$) invariant spherical hyperfunctions on \mathbb{R}^{p+q} , where \mathbb{R}^{p+q} can be regarded as the tangent space of the semisimple symmetric space; $SO_0(p+1, q)/SO_0(p, q)$. However, studying spherical hyperfunctions, the author found interesting phenomenon. That is; if f is an H-invariant eigen hyperfunction then f is \tilde{H} -invariant, where \tilde{H} is the connected component of the Lie group of all non-singular transformations T on q such that p(Tx)= p(x) for any H-invariant polynomial p and $x \in q$. In fact, \tilde{H} is "large" (if $G = SL(m + 1, \mathbf{R})$ and $H = GL^+(m, \mathbf{R})$, then dim $H = m^2$ and dim \tilde{H} $= 2m^2 - m$). It seems that this phenomenon is independent of the category of functions but is dependent on H or \tilde{H} orbits structure on q. In his paper [8], Ochiai deals with this problem as \mathcal{D} -module structure generated by the Lie algebra h or $\tilde{\mathfrak{h}}$ which is the Lie algebra corresponding to \tilde{H} .

In this paper, we prove that for "generic" eigen values if f is an H-invariant eigen hyperfunction then f is \tilde{H} -invariant (see Theorem 5.1 in §5). From Cerezo's result and Theorem 5.1, we can determine the dimension of spherical hyperfunctions on q when rank q = 1 and eigen value $\mu \neq 0$ (see §5).