Spherical hyperfunctions on the tangent space of symmetric spaces

Atsutaka Kowata
(Received May 11, 1990)

Introduction

Let G be connected semisimple Lie group, σ an involutive automorphism of G and H an open subgroup of fixed points of σ. Then G / H is called a semisimple symmetric space and the tangent space at the origin of G / H is identified with a complement \mathfrak{q} of \mathfrak{b} in \mathfrak{g}, where \mathfrak{g} and \mathfrak{h} are the Lie algebras coresponding to G and H, respectively.

In this paper, we consider spherical hyperfunctions on \mathfrak{q} that are H invariant and simultaneously eigen hyperfunctions on \mathfrak{q}. There have appeared several papers dealing with spherical functions on \mathfrak{q} ([1], [2], [3], [5], [9], [10]). In his paper [2], van Dijk listed up spherical distributions for the rank 1 case. On the other hand, in his paper [1], Cerezo determined the dimension of $O(p, q)$ (or $S_{0}(p, q)$) invariant spherical hyperfunctions on \boldsymbol{R}^{p+q}, where \boldsymbol{R}^{p+q} can be regarded as the tangent space of the semisimple symmetric space; $S O_{0}(p+1, q) / S O_{0}(p, q)$. However, studying spherical hyperfunctions, the author found interesting phenomenon. That is; if f is an H-invariant eigen hyperfunction then f is \tilde{H}-invariant, where \tilde{H} is the connected component of the Lie group of all non-singular transformations T on \mathfrak{q} such that $p(T x)$ $=p(x)$ for any H-invariant polynomial p and $x \in \mathfrak{q}$. In fact, \tilde{H} is "large" (if $G=S L(m+1, \boldsymbol{R})$ and $H=G L^{+}(m, \boldsymbol{R})$, then $\operatorname{dim} H=m^{2}$ and $\operatorname{dim} \tilde{H}$ $\left.=2 m^{2}-m\right)$. It seems that this phenomenon is independent of the category of functions but is dependent on H or \tilde{H} orbits structure on q. In his paper [8], Ochiai deals with this problem as \mathscr{D}-module structure generated by the Lie algebra \mathfrak{h} or $\tilde{\mathfrak{h}}$ which is the Lie algebra corresponding to \tilde{H}.

In this paper, we prove that for "generic" eigen values if f is an H invariant eigen hyperfunction then f is \tilde{H}-invariant (see Theorem 5.1 in §5). From Cerezo's result and Theorem 5.1, we can determine the dimension of spherical hyperfunctions on \mathfrak{q} when rank $\mathfrak{q}=1$ and eigen value $\mu \neq 0$ (see §5).

