On the construction of spherical hyperfunctions on \boldsymbol{R}^{p+q}

Atsutaka Kowata

(Received March 16, 1990)

Introduction

We consider $S O_{0}(p, q)$ (or $O(p, q)$-invariant solutions u of the differential equation $(p+v) u=0$, where $P=\sum_{1 \leq i \leq p}\left(\partial / \partial x_{i}\right)^{2}-\sum_{1 \leq j \leq q}\left(\partial / \partial y_{j}\right)^{2}$ and v is a complex number. There have appeared several papers dealing with the above solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand, we find as a corollary of the result of A. Cerezo [2]: the dimension of the space of $O(p, q)$-invariant hyperfunctions u on \boldsymbol{R}^{p+q} which are solutions of the equation $(P+v) u=0$ is 2 and only $S O_{0}(p, q)$-invariant is 2 if $p>1$ and $q=1$, or $p=1$ and $q>1,4$ if $p=1$, respectively.

In this paper, we call such hyperfunctions "spherical hyperfunctions" and will give integral representations of "spherical hyperfunctions". In the paper [3], Ehrenpreis' principle says that any solution u of a differential equation $P u$ $=0$ with constant coefficients has an integral representation by a suitable measure on the variety defined by the polynomial $\sigma_{T}(P)(i \xi)$, where $\sigma_{T}(P)$ is the total symbol of P. Thus spherical hyperfunctions may be represented through integrals with respect to $S O_{0}(p, q)$ (or $O(p, q)$)-invariant measures on the variety $\left\{(\xi, \eta) \in \boldsymbol{C}^{p+q} ; \sum \xi_{i}^{2}-\sum \eta_{j}^{2}-v=0\right\}$. But these integrals are not convergent at any point of \boldsymbol{R}^{p+q}. However, in his paper [11], Sato's idea enables us to justify these integrals. Thus we can construct spherical hyperfunctions explicitly. In this paper, when v is not 0 , we give integral representations of spherical hyperfunctions except for $p>1$ and $q=1$. But when $p>1$ and $q=1$ we can construct spherical hyperfunctions in the same way as in the case of $p=1$ and $q>1$.

I would like to express hearty thanks to Professor K. Okamoto who taught me Sato's idea.

§0. Notations

Let $G=O(p, q)$ and $G_{0}=S O_{0}(p, q)$ for $p \geq 1$ and $q \geq 1$. Then both G and G_{0} are acting on \boldsymbol{R}^{p+q} naturally. Let v be a non-zero arbitrary complex number and put $\mu=(1 / 2) \operatorname{Arg}(v)\left(\operatorname{Arg}\right.$ is the principal value) and $\lambda=|v|^{1 / 2} e^{i \mu}$, where $i=(-1)^{1 / 2}$. Then $-\pi / 2<\mu \leq \pi / 2$ and $v=\lambda^{2}$. Let $\mathfrak{g}=\mathfrak{s o}_{0}(p, q)$ that is the Lie algebra of both G and G_{0}. Let $\mathscr{B}^{G}\left(\boldsymbol{R}^{p+q}\right)\left(\mathscr{B}^{G_{0}}\left(\boldsymbol{R}^{p+q}\right)\right)$ be the space of

