On the construction of spherical hyperfunctions on R^{p+q}

Atsutaka KOWATA (Received March 16, 1990)

,

Introduction

We consider $SO_0(p, q)$ (or O(p, q)-invariant solutions u of the differential equation (p + v)u = 0, where $P = \sum_{1 \le i \le p} (\partial/\partial x_i)^2 - \sum_{1 \le j \le q} (\partial/\partial y_j)^2$ and v is a complex number. There have appeared several papers dealing with the above solutions in the sense of distributions ([4], [9], [10], [14]). On the other hand, we find as a corollary of the result of A. Cerezo [2]: the dimension of the space of O(p, q)-invariant hyperfunctions u on \mathbb{R}^{p+q} which are solutions of the equation (P + v)u = 0 is 2 and only $SO_0(p, q)$ -invariant is 2 if p > 1 and q = 1, or p = 1 and q > 1, 4 if p = 1, respectively.

In this paper, we call such hyperfunctions "spherical hyperfunctions" and will give integral representations of "spherical hyperfunctions". In the paper [3], Ehrenpreis' principle says that any solution u of a differential equation Pu = 0 with constant coefficients has an integral representation by a suitable measure on the variety defined by the polynomial $\sigma_T(P)(i\xi)$, where $\sigma_T(P)$ is the total symbol of P. Thus spherical hyperfunctions may be represented through integrals with respect to $SO_0(p, q)$ (or O(p, q))-invariant measures on the variety $\{(\xi, \eta) \in \mathbb{C}^{p+q}; \sum_i \xi_i^2 - \sum_i \eta_j^2 - v = 0\}$. But these integrals are not convergent at any point of \mathbb{R}^{p+q} . However, in his paper [11], Sato's idea enables us to justify these integrals. Thus we can construct spherical hyperfunctions except for p > 1 and q = 1. But when p > 1 and q = 1 we can construct spherical hyperfunctions in the same way as in the case of p = 1 and q > 1.

I would like to express hearty thanks to Professor K. Okamoto who taught me Sato's idea.

§0. Notations

Let G = O(p, q) and $G_0 = SO_0(p, q)$ for $p \ge 1$ and $q \ge 1$. Then both G and G_0 are acting on \mathbb{R}^{p+q} naturally. Let v be a non-zero arbitrary complex number and put $\mu = (1/2)\operatorname{Arg}(v)$ (Arg is the principal value) and $\lambda = |v|^{1/2}e^{i\mu}$, where $i = (-1)^{1/2}$. Then $-\pi/2 < \mu \le \pi/2$ and $v = \lambda^2$. Let $g = \mathfrak{so}_0(p, q)$ that is the Lie algebra of both G and G_0 . Let $\mathscr{B}^G(\mathbb{R}^{p+q})(\mathscr{B}^{G_0}(\mathbb{R}^{p+q}))$ be the space of