Zeta functions of Selberg's type associated with homogeneous vector bundles

Masato WAKAYAMA

(Received September 13, 1984)

0. Introduction

Let G be a connected noncompact semisimple Lie group with finite center, and let K be a maximal compact subgroup of G. Let \tilde{M} be the symmetric space G/K. We endow \tilde{M} with a G-invariant metric. We assume throughout this paper that rank $(\tilde{M})=1$.

Let Γ be a discrete torsion-free subgroup of G such that the quotient $\Gamma \setminus G$ is compact. Γ acts on the symmetric space \tilde{M} by left translations and the quotient space $\Gamma \setminus \tilde{M}$ is also compact. We give to the quotient manifold $\Gamma \setminus \tilde{M}$ which we will call \overline{M} , the push down Riemannian metric. Then \overline{M} is the most general compact locally symmetric space of negative curvature. Also, the simply connected covering manifold of \overline{M} is \tilde{M} , and we have $\pi_1(\overline{M}) = \Gamma$.

Let T be a finite dimensional unitary representation of Γ on a vector space E_T with character χ_T . Since Γ is unimodular, there exists a G-invariant measure $d\dot{x}$ on the quotient space $\Gamma \setminus G$. We denote by $L^2(\Gamma \setminus G, T)$ the space of E_T valued measurable functions f on G such that (i) $f(\gamma x) = T(\gamma)f(x)$ for $\gamma \in \Gamma$, $x \in G$ and (ii) $\int_{\Gamma \setminus G} ||f(\dot{x})||^2 d\dot{x} < \infty$. Since Γ is cocompact, the right regular representation $\pi_{\Gamma,T}$ of G on $L^2(\Gamma \setminus G, T)$ decomposes

$$\pi_{\Gamma,T} = \sum_{\pi \in \widehat{G}} n_{\Gamma,T}(\pi) \pi$$

and $n_{\Gamma,T}(\pi) < \infty$ for any $\pi \in \hat{G}$. Here \hat{G} stands for the set of all equivalence classes of irreducible unitary representations of G. Suppose that a function f is a C^{∞} element of $L^2(\Gamma \setminus G, T)$ with compact support on G. Then the operator $\pi_{\Gamma,T}(f) = \int_G f(x)\pi_{\Gamma,T}(x)dx$ on $L^2(\Gamma \setminus G, T)$ is well defined and is of trace class. Therefore tr $\pi_{\Gamma,T}(f) = \sum_{\pi \in G} n_{\Gamma,T}(\pi)\Theta_{\pi}(f)$, where Θ_{π} denotes the character of the class π . On the other hand, we may compute a trace of $\pi_{\Gamma,T}(f)$ in a different manner by using the Selberg trace formula.

In this paper, applying a suitable function in $\mathscr{C}^1(G)$ to the trace formula, we will consider the generalization of the following results.

Let X be a compact Riemann surface of genus bigger than 2. Then $X = \Gamma \setminus H$ where $H = SL(2, \mathbb{R})/SO(2)$ is the upper half plane, and Γ is a discrete subgroup of