Noetherian property of symbolic Rees algebras

Akira Ooishi

(Received November 16, 1984)

In the course of giving a counter-example to a problem of Zariski, D. Rees [6] proved the following theorem: Let \mathfrak{p} be a prime ideal of a two-dimensional noetherian normal local domain with $ht(\mathfrak{p})=1$. If the graded ring $\bigoplus_{n\geq 0} \mathfrak{p}^{(n)}$ is noetherian, then $\mathfrak{p}^{(d)}$ is a principal ideal for some $d\geq 1$.

The aim of this note is to give a generalization of this theorem, which is stated as follows:

THEOREM. Let \mathfrak{p} be a prime ideal of a noetherian normal Nagata local domain R. Assume that dim $(R/\mathfrak{p})=1$ and $R_\mathfrak{p}$ is regular. Then the graded ring $\bigoplus_{n\geq 0} \mathfrak{p}^{(n)}$ is noetherian if and only if $\ell(\mathfrak{p}^{(d)}) = \dim(R) - 1$ for some $d\geq 1$. Here we denote by $\ell(I)$ the analytic spread of an ideal I. (Concerning Nagata domains, see [3].)

Throughout this paper, let R be a commutative ring and let I be an ideal of R. We denote by $S=R-Z_R(R/I)$ the set of R/I-regular elements of R, and for an R-module M, we put $M_I=M_S$. If R is a noetherian domain, then we have $R_I=\bigcap_{\mathfrak{p}\in Ass_R(R/I)}R_{\mathfrak{p}}$. For an integer $n\geq 0$, we define the *n*-th symbolic power $I^{(n)}$ of I by $I^{(n)}=I^nR_I \cap R=\{x\in R; tx\in R \text{ for some } R/I\text{-regular element } t\in R\}$.

PROPOSITION 1. (1) $Z_R(R/I^{(n)}) \subset Z_R(R/I)$ for all $n \ge 1$.

(2) $I^{(1)} = I$, $rad(I^{(n)}) = rad(I)$, $I^{(m)}I^{(n)} \subset I^{(m+n)}$ and $I^{(mn)} \subset I^{(m)(n)}$ for all $m, n \ge 1$.

(3) Assume that R is noetherian and $\operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$. Then $\operatorname{Ass}_{R}(R/I^{(n)}) = \operatorname{Min}_{R}(R/I)$ for all $n \ge 1$. In particular, $Z_{R}(R/I^{(n)}) = Z_{R}(R/I)$ for all $n \ge 1$. Also, we have $I^{(mn)} = I^{(m)(n)}$ for all $m, n \ge 1$. Here we denote by $\operatorname{Min}_{R}(R/I)$ the set of minimal prime ideals of I.

PROOF. (1) Assume that $t \in R$ is R/I-regular and $tx \in I^{(n)}$ for some $x \in R$. Then we have $s(tx) \in I^n$ for some R/I-regular element $s \in R$. Hence st is R/I-regular and $(st)x \in I^n$. This implies that $x \in I^{(n)}$.

(2) We prove the inclusion $I^{(mn)} \subset I^{(m)(n)}$. Take an element x of $I^{(mn)}$. Then for some R/I-regular element $t \in R$, we have $tx \in I^{mn} \subset I^{(m)n}$. Since t is $R/I^{(m)}$ -regular by (1), we have $x \in I^{(m)(n)}$.

(3) If $\mathfrak{p} \in \operatorname{Ass}_{R}(R/I^{(n)})$, then $\mathfrak{p} \subset Z_{R}(R/I^{(n)}) \subset Z_{R}(R/I)$. Hence $I \subset \mathfrak{p} \subset \mathfrak{q}$ for some $\mathfrak{q} \in \operatorname{Ass}_{R}(R/I) = \operatorname{Min}_{R}(R/I)$. Therefore we have $\mathfrak{p} = \mathfrak{q} \in \operatorname{Min}_{R}(R/I)$.