Noetherian property of symbolic Rees algebras

Akira Ooishi
(Received November 16, 1984)

In the course of giving a counter-example to a problem of Zariski, D. Rees [6] proved the following theorem: Let \mathfrak{p} be a prime ideal of a two-dimensional noetherian normal local domain with $h t(\mathfrak{p})=1$. If the graded ring $\oplus_{n \geqq 0} \mathfrak{p}^{(n)}$ is noetherian, then $\mathfrak{p}^{(d)}$ is a principal ideal for some $d \geqq 1$.

The aim of this note is to give a generalization of this theorem, which is stated as follows:

Theorem. Let \mathfrak{p} be a prime ideal of a noetherian normal Nagata local domain R. Assume that $\operatorname{dim}(R / \mathfrak{p})=1$ and R_{p} is regular. Then the graded ring $\oplus_{n \geqq 0} \mathfrak{p}^{(n)}$ is noetherian if and only if $\ell\left(\mathfrak{p}^{(d)}\right)=\operatorname{dim}(R)-1$ for some $d \geqq 1$. Here we denote by $\ell(I)$ the analytic spread of an ideal I. (Concerning Nagata domains, see [3].)

Throughout this paper, let R be a commutative ring and let I be an ideal of R. We denote by $S=R-Z_{R}(R / I)$ the set of R / I-regular elements of R, and for an R-module M, we put $M_{I}=M_{S}$. If R is a noetherian domain, then we have $R_{I}=\cap_{p \in A_{s_{R}(R / I)}} R_{p}$. For an integer $n \geqq 0$, we define the n-th symbolic power $I^{(n)}$ of I by $I^{(n)}=I^{n} R_{I} \cap R=\{x \in R ; t x \in R$ for some R / I-regular element $t \in R\}$.

Proposition 1. (1) $Z_{R}\left(R / I^{(n)}\right) \subset Z_{R}(R / I)$ for all $n \geqq 1$.
(2) $I^{(1)}=I, \operatorname{rad}\left(I^{(n)}\right)=\operatorname{rad}(I), I^{(m)} I^{(n)} \subset I^{(m+n)}$ and $I^{(m n)} \subset I^{(m)(n)}$ for all $m, n \geqq 1$.
(3) Assume that R is noetherian and $\operatorname{Ass}_{R}(R / I)=\operatorname{Min}_{R}(R / I)$. Then $\operatorname{Ass}_{R}\left(R / I^{(n)}\right)=\operatorname{Min}_{R}(R / I)$ for all $n \geqq 1$. In particular, $Z_{R}\left(R / I^{(n)}\right)=Z_{R}(R / I)$ for all $n \geqq 1$. Also, we have $I^{(m n)}=I^{(m)(n)}$ for all $m, n \geqq 1$. Here we denote by $\operatorname{Min}_{R}(R / I)$ the set of minimal prime ideals of I.

Proof. (1) Assume that $t \in R$ is R / I-regular and $t x \in I^{(n)}$ for some $x \in R$. Then we have $s(t x) \in I^{n}$ for some R / I-regular element $s \in R$. Hence $s t$ is R / I regular and $(s t) x \in I^{n}$. This implies that $x \in I^{(n)}$.
(2) We prove the inclusion $I^{(m n)} \subset I^{(m)(n)}$. Take an element x of $I^{(m n)}$. Then for some R / I-regular element $t \in R$, we have $t x \in I^{m n} \subset I^{(m) n}$. Since t is $R / I^{(m)}$-regular by (1), we have $x \in I^{(m)(n)}$.
(3) If $\mathfrak{p} \in \operatorname{Ass}_{R}\left(R / I^{(n)}\right)$, then $\mathfrak{p} \subset Z_{R}\left(R / I^{(n)}\right) \subset Z_{R}(R / I)$. Hence $I \subset \mathfrak{p} \subset \mathfrak{q}$ for some $\mathfrak{q} \in \operatorname{Ass}_{R}(R / I)=\operatorname{Min}_{R}(R / I)$. Therefore we have $\mathfrak{p}=\mathfrak{q} \in \operatorname{Min}_{R}(R / I)$.

