Oscillation of functional differential equations with general deviating arguments

Yuichi KITAMURA

(Received August 25, 1984)

Introduction

In this paper we consider linear and nonlinear functional differential equations with deviating arguments of the forms

(LE)
$$L_n x(t) + \sigma \sum_{h=1}^N q_h(t) x(g_h(t)) = 0,$$

(NE)
$$L_n x(t) + \sigma \sum_{h=1}^N q_h(t) f_h(x(g_h(t))) = 0,$$

where L_n is a disconjugate differential operator defined recursively by

(1)
$$L_0 x = x, \quad L_i x = \frac{1}{p_i} \frac{d}{dt} L_{i-1} x \ (1 \le i \le n), \quad p_n \equiv 1.$$

The following conditions are assumed to hold throughout this paper:

(a)
$$n \ge 2, \sigma = \pm 1;$$

(b)
$$p_i \in C(R_+, R_+ \setminus \{0\}), \quad \int_{\infty}^{\infty} p_i(t) dt = \infty \ (1 \le i \le n-1), \quad R_+ = [0, \infty);$$

- (c) $q_h \in C(R_+, R_+), \quad g_h \in C(R_+, R), \quad \lim_{t \to \infty} g_h(t) = \infty \ (1 \le h \le N);$
- (d) $f_h \in C(R, R)$ is nondecreasing and $xf_h(x) > 0$ for $x \neq 0$ $(1 \le h \le N)$.

The domain of L_n , $\mathscr{D}(L_n)$, is defined to be the set of all functions x which have the continuous "quasi-derivatives" $L_i x$, $0 \le i \le n$, on $[T_x, \infty)$. Our attention is restricted to those solutions $x \in \mathscr{D}(L_n)$ of (LE) or (NE) which satisfy

$$\sup \{ |x(t)| \colon t \ge T \} > 0 \quad \text{for any} \quad T \ge T_x.$$

Such a solution is said to be a proper solution. We make the standing hypothesis that (LE) or (NE) possesses proper solutions. A proper solution of (LE) or (NE) is called oscillatory if it has arbitrarily large zeros; otherwise it is called non-oscillatory.

We denote the sets of all proper solutions, all oscillatory solutions and all nonoscillatory solutions of (LE) or (NE) by \mathscr{S} , \mathscr{O} and \mathscr{N} , respectively. It is clear that $\mathscr{S} = \mathscr{O} \cup \mathscr{N}$. Because of the conditions (a)-(d) \mathscr{N} has a decomposition such that (see [2], [13] or [45]):

$$\mathcal{N} = \mathcal{N}_1 \cup \mathcal{N}_3 \cup \cdots \cup \mathcal{N}_{n-1}$$
 if $\sigma = 1$ and *n* is even,