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Introduction

In this paper we consider linear and nonlinear functional differential equations

with deviating arguments of the forms

(LE) Lnx(t) + σ ΣN

h=i qh(t)x(gh(t)) = 0,

(NE) Lnx(t) + σ Σfi-i qh(ϋfh(x(gh(t))) = 0,

where Ln is a disconjugate differential operator defined recursively by

/i\ r v _ v r v 1 d τ

yi) i^ox — x, i^iX — , ±ji_ί

The following conditions are assumed to hold throughout this paper:

(a) n > 2, σ = ± 1

(b) PieC(R + ,R+\{0})9 \)™pi(t)dt=oo(l<i<n-l), R + = [0, αo);

(c) qheC(R + ,R+)9 gheC(R + fR), l i n w gh(t) = oo

(d) fh e C(R, R) is nondecreasing and xfh(x) > 0 for x Φ 0 (1 < h < N).

The domain of Lw, ^(Lπ), is defined to be the set of all functions x which have

the continuous "quasi-derivatives" Lfx, 0 < ΐ < n , on [Tx, oo). Our attention is

restricted to those solutions x e @(Ln) of (LE) or (NE) which satisfy

sup {\x(t)\: t > T} > 0 for any T > Tx.

Such a solution is said to be a proper solution. We make the standing hypothesis

that (LE) or (NE) possesses proper solutions. A proper solution of (LE) or (NE)

is called oscillatory if it has arbitrarily large zeros otherwise it is called non-

oscillatory.

We denote the sets of all proper solutions, all oscillatory solutions and all

nonoscillatory solutions of (LE) or (NE) by y , Θ and Jί, respectively. It is

clear that £f = Θ U ^ . Because of the conditions (a)-(d) Jί has a decomposition

such that (see [2], [13] or [45]):

. / z z ^ U ^ u U ΛVx if σ = 1 and n is even,


