Spaces of orderings and quadratic extensions of fields

Tatsuo IWAKAMI and Daiji KIJIMA (Received January 18, 1985)

Let P be a preordering of a field F of finite index and $K = F(\sqrt{a})$ be a radical extension of F(i.e. a is an element of Kaplansky's radical of F). We denote by n the number of the connected components of X(F/P). In [4], we showed that $n = \dim H_F(P)/P$ ([4], Theorem 2.5) and the number of connected components of X(K/P') is 2n, where $P' = \Sigma P\dot{K}^2$ ([4], Theorem 3.10).

The main purpose of this paper is to study a relation between X(F) and X(K), where F is a quasi-pythagorean field whose Kaplansky's radical R(F) is of finite index and $K = F(\sqrt{a})$ is a quadratic extension of F. In §2, we show that if $a \in H_F$, then X(K) is equivalent to $H_F(a) \oplus H_F(a)$ (Theorem 2.9). In §3, we assume that X(F) is connected and show that the following results. If $a \in B_{R(F)}$, then X(K) is equivalent to X(F), where $B_{R(F)}$ is the set of R(F)-basic elements of F (Theorem 3.3). If $a \in B_{R(F)} \setminus \pm R(F)$ and $D_F \langle 1, a \rangle D_F \langle 1, -a \rangle = B_{R(F)}$, then X(F) is equivalent to a group extension of $H_{X_1}(a) \oplus H_{X_1}(a)$, where the space $H_{X_1}(a)$ is defined in §3 (Theorem 3.5).

§ 1. Valuations on quasi-pythagorean fields

In this section, we state some results on valuations on quasi-pythagorean fields. By a field F, we shall always mean a field of characteristic different from two. We denote by F the multiplicative group of F. Let v be a valuation on F. The value group Γ will always be written multiplicatively. The objects: the valuation ring of v, the maximal ideal of v, the group of units and the residue class field of v will be denoted by A, M, U and \overline{F} respectively. For a subset $B \subseteq A$, we put $\overline{B} = \{x + M \in \overline{F} | x \in B\}$.

We write v' for the composition $\dot{F} \xrightarrow{v} \Gamma \rightarrow \Gamma / \Gamma^2$. For simplicity, we also write v' for the induced homomorphism $\dot{F}/\dot{F}^2 \rightarrow \Gamma / \Gamma^2$. There is a natural short exact sequence

$$1 \longrightarrow U\dot{F}^2/\dot{F}^2 \longrightarrow \dot{F}/\dot{F}^2 \xrightarrow{v'} \Gamma/\Gamma^2 \longrightarrow 1.$$

Since the three groups involved are all elementary 2-groups, this is a split exact sequence. We shall choose and fix a splitting $\lambda \colon \dot{F}/\dot{F}^2 \to U\dot{F}^2/\dot{F}^2$. Composing λ with the natural maps $U\dot{F}^2/\dot{F}^2 \cong U/U \cap \dot{F}^2 \to (\bar{F})\cdot/(\bar{F})\cdot^2$, we get a surjective homomorphism $\lambda' \colon \dot{F}/\dot{F}^2 \to (\bar{F})\cdot/(\bar{F})\cdot^2$. By abuse of notation, the composition of this