Spaces of orderings and quadratic extensions of fields

Tatsuo Iwakami and Daiji Kilma
(Received January 18, 1985)

Let P be a preordering of a field F of finite index and $K=F(\sqrt{a})$ be a radical extension of F (i.e. a is an element of Kaplansky's radical of F). We denote by n the number of the connected components of $X(F / P)$. In [4], we showed that $n=\operatorname{dim} H_{F}(P) / P([4]$, Theorem 2.5) and the number of connected components of $X\left(K / P^{\prime}\right)$ is $2 n$, where $P^{\prime}=\Sigma P \dot{K}^{2}$ ([4], Theorem 3.10).

The main purpose of this paper is to study a relation between $X(F)$ and $X(K)$, where F is a quasi-pythagorean field whose Kaplansky's radical $R(F)$ is of finite index and $K=F(\sqrt{a})$ is a quadratic extension of F. In $\S 2$, we show that if $a \in H_{F}$, then $X(K)$ is equivalent to $H_{F}(a) \oplus H_{F}(a)$ (Theorem 2.9). In §3, we assume that $X(F)$ is connected and show that the following results. If $a \in B_{R(F)}$, then $X(K)$ is equivalent to $X(F)$, where $B_{R(F)}$ is the set of $R(F)$-basic elements of \dot{F} (Theorem 3.3). If $\left.a \in B_{R(F)}\right\rangle \pm R(F)$ and $D_{F}\langle 1, a\rangle D_{F}\langle 1,-a\rangle=B_{R(F)}$, then $X(F)$ is equivalent to a group extension of $H_{X_{1}}(a) \oplus H_{X_{1}}(a)$, where the space $H_{X_{1}}(a)$ is defined in $\S 3$ (Theorem 3.5).

§1. Valuations on quasi-pythagorean fields

In this section, we state some results on valuations on quasi-pythagorean fields. By a field F, we shall always mean a field of characteristic different from two. We denote by \dot{F} the multiplicative group of F. Let v be a valuation on F. The value group Γ will always be written multiplicatively. The objects: the valuation ring of v, the maximal ideal of v, the group of units and the residue class field of v will be denoted by A, M, U and \bar{F} respectively. For a subset $B \subseteq A$, we put $\bar{B}=\{x+M \in \bar{F} \mid x \in B\}$.

We write v^{\prime} for the composition $\stackrel{\dot{F} \xrightarrow{\bullet}}{\longrightarrow} \rightarrow \Gamma / \Gamma^{2}$. For simplicity, we also write v^{\prime} for the induced homomorphism $\dot{F} / \dot{F}^{2} \rightarrow \Gamma / \Gamma^{2}$. There is a natural short exact sequence

$$
1 \longrightarrow U \dot{F}^{2} / \dot{F}^{2} \longrightarrow \dot{F} / \dot{F}^{2} \xrightarrow{o^{\prime}} \Gamma / \Gamma^{2} \longrightarrow 1 .
$$

Since the three groups involved are all elementary 2-groups, this is a split exact sequence. We shall choose and fix a splitting $\lambda: \dot{F} / \dot{F}^{2} \rightarrow U \dot{F}^{2} / \dot{F}^{2}$. Composing λ with the natural maps $U \dot{F}^{2} / \dot{F}^{2} \cong U / U \cap \dot{F}^{2} \rightarrow(\bar{F}) \cdot /(\bar{F})^{2}$, we get a surjective homomorphism $\lambda^{\prime}: \dot{F} / \dot{F}^{2} \rightarrow(\bar{F})^{\cdot /(} /(\bar{F})^{\cdot 2}$. By abuse of notation, the composition of this

