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Introduction

In this paper we investigate the structure of generalizations of Witt algebras

over a field ϊ of characteristic zero, and consider a class of infinite-dimensional

simple Lie algebras over ϊ. Let I be a non-empty index set and G be an additive

subgroup of ΠieItt, where t\ (ίel) are copies of the additive group ί. Let

W(G, I) be the Lie algebra over I with basis {w(α, ί)\ae G, ie 1} and the multi-

plication

[w(α, 0, HbJ)'] = cijW(a + b, i) - biW(a + bJ),

where i,jel and a = {a^)ieI, b = (ft i) i e /eG. The Lie algebra W(G, I) is infinite-

dimensional if G # 0 .

We note that if the field ! is of characteristic p > 0, then W(G, I) is isomorphic

to the generalized Witt algebra defined by Kaplansky [3]. It is known that the

generalized Witt algebra is simple if G is " total" and ! is of characteristic p>2

[3] (see also Ree [5], Seligman [6], and Wilson [7]). It is also known that

W(G, I) is simple if |/| = 1, G^O, and I is of characteristic Φ2 [2, p. 206].

The main results of this paper are as follows: If G Φ 0, then W(G, ϊ) is a

direct sum of the unique maximal ideal R of W(G, 1) and a simple subalgebra

S of W(G, I), where S is isomorphic to W(H9 J) for some H and J (Theorem

3.1). If GφO, then the following statements are equivalent: (i) W(G, I) is

simple; (ii) R = 0; (iii) the center of W(G, I) is 0; (iv) G is " tota l" (Corollary 3.2).

W(G, I) is a finitely generated Lie algebra if and only if / is a finite set and G

is a finitely generated group (Theorem 4.1). If J = {l,...,n} and G = © y = 1 Z f ,

then W(G, I) is isomorphic to the derivation algebra of i[x!, x^1,..., xπ, x" 1 ]

(Proposition 4.2).
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1. Notation and preliminary results

Throughout this paper the ground field I is of characteristic zero and Lie


