Positive entire solutions of superlinear elliptic equations

Takaŝi KUSANO and Manabu NAITO (Received August 20, 1985)

1. Introduction

In this paper we consider the semilinear elliptic equation

(1)
$$\Delta u + p(|x|)u^{\gamma} = 0, \qquad x \in \mathbb{R}^n,$$

where $n \ge 3$, Δ is the *n*-dimensional Laplace operator, and |x| denotes the Euclidean length of $x \in \mathbb{R}^n$. It is assumed throughout that

(a) $\gamma > 1$ (namely, (1) is superlinear);

(b) p is continuous on $[0, \infty)$, differentiable on $(0, \infty)$ and p(t)>0 for t>0.

Our main concern is to study the existence and nonexistence of entire solutions of (1) which are radially symmetric and positive in \mathbb{R}^n . Here, by an entire solution of (1) we mean a function $u \in C^2(\mathbb{R}^n)$ which satisfies (1) at every point of \mathbb{R}^n , and the radial symmetry of a function means that it depends only on |x|.

The principal results of this paper are as follows:

THEOREM 1 (Existence). Suppose that

(2)
$$\frac{d}{dt}\left(t^{\left[n+2-\gamma(n-2)\right]/2}p(t)\right) \leq 0 \quad for \quad t>0.$$

Then, for any $\alpha > 0$, equation (1) has a radially symmetric positive entire solution u such that $u(0) = \alpha$.

THEOREM 2 (Nonexistence). Suppose that

(3)
$$\frac{d}{dt}(t^{[n+2-\gamma(n-2)]/2}p(t)) \ge 0 \quad for \quad t > 0$$

and

(4)
$$t^{[n+2-\gamma(n-2)]/2}p(t) \longrightarrow \infty \quad as \quad t \longrightarrow \infty.$$

Then, equation (1) has no radially symmetric positive entire solutions.

Since our attention is restricted to radially symmetric solutions, the problem for (1) under consideration reduces to the one-dimensional initial value problem

(5)
$$(t^{n-1}y')' + t^{n-1}p(t)y^{\gamma} = 0, \quad t > 0,$$