Positive entire solutions of superlinear elliptic equations

Takaŝi Kusano and Manabu Narto
(Received August 20, 1985)

1. Introduction

In this paper we consider the semilinear elliptic equation

$$
\begin{equation*}
\Delta u+p(|x|) u^{\gamma}=0, \quad x \in R^{n} \tag{1}
\end{equation*}
$$

where $n \geqq 3, \Delta$ is the n-dimensional Laplace operator, and $|x|$ denotes the Euclidean length of $x \in R^{n}$. It is assumed throughout that
(a) $\gamma>1$ (namely, (1) is superlinear);
(b) p is continuous on $[0, \infty)$, differentiable on $(0, \infty)$ and $p(t)>0$ for $t>0$.

Our main concern is to study the existence and nonexistence of entire solutions of (1) which are radially symmetric and positive in R^{n}. Here, by an entire solution of (1) we mean a function $u \in C^{2}\left(R^{n}\right)$ which satisfies (1) at every point of R^{n}, and the radial symmetry of a function means that it depends only on $|x|$.

The principal results of this paper are as follows:
Theorem 1 (Existence). Suppose that

$$
\begin{equation*}
\frac{d}{d t}\left(t^{[n+2-\gamma(n-2)] / 2} p(t)\right) \leqq 0 \quad \text { for } \quad t>0 \tag{2}
\end{equation*}
$$

Then, for any $\alpha>0$, equation (1) has a radially symmetric positive entire solution u such that $u(0)=\alpha$.

Theorem 2 (Nonexistence). Suppose that

$$
\begin{equation*}
\frac{d}{d t}\left(t^{[n+2-\gamma(n-2)] / 2} p(t)\right) \geqq 0 \quad \text { for } \quad t>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{[n+2-\gamma(n-2)] / 2} p(t) \longrightarrow \infty \quad \text { as } t \longrightarrow \infty . \tag{4}
\end{equation*}
$$

Then, equation (1) has no radially symmetric positive entire solutions.
Since our attention is restricted to radially symmetric solutions, the problem for (1) under consideration reduces to the one-dimensional initial value problem

$$
\begin{equation*}
\left(t^{n-1} y^{\prime}\right)^{\prime}+t^{n-1} p(t) y^{\gamma}=0, \quad t>0, \tag{5}
\end{equation*}
$$

