Oscillation theorems for nonlinear differential systems with general deviating arguments

P. MARUŠIAK

(Received December 20, 1985)

1. Introduction

The oscillation theory of nonlinear differential systems with deviating argements has been developed by many authors. Most of them have studied two-dimensional differential systems; see, for example, Kitamura and Kusano [2-4], Shevelo, Varech and Gritsai [8], and Varech and Shevelo [9, 10]. The oscillation results for *n*-dimensional systems with deviating arguments have been given by Foltynska and Werbowski [1], the present author [5, 6] and Šeda [7].

The purpose of this paper is to obtain oscillation criteria for the nonlinear differential system with general deviating arguments of the form:

 $(S_r) y'_i(t) = p_i(t)f_i(y_{i+1}(h_{i+1}(t))), i = 1, 2, ..., n-1,$ $y'_n(t) = (-1)^r p_n(t)f_n(y_1(h_1(t))), r = 1, 2,$

where the following conditions are assumed to hold:

(1) a) $p_i: [0, \infty) \rightarrow [0, \infty), i = 1, 2, ..., n$, are continuous and not identically zero on any infinite subinterval of $[0, \infty)$, and

$$\int_{0}^{\infty} p_{i}(t)dt = \infty, \quad i = 1, 2, ..., n-1;$$

- b) $h_i: [0, \infty) \rightarrow R$ are continuous and $\lim_{t \rightarrow \infty} h_i(t) = \infty, i = 1, ..., n$;
- c) $f_i: R \to R$ are continuous and $uf_i(u) > 0$ for $u \neq 0, i = 1, 2, ..., n$.

Denote by W the set of all solutions $y(t) = (y_1(t), ..., y_n(t))$ of the system (S_r) which exist on some ray $[T_y, \infty) \subset [0, \infty)$ and satisfy sup $\{\sum_{i=1}^n |y_i(t)|; t \ge T\} > 0$ for all $T \ge T_y$.

DEFINITION 1. A solution $y \in W$ is called oscillatory if each component has arbitrarily large zeros.

A solution $y \in W$ is called nonoscillatory (resp. weakly nonoscillatory) if each component (resp. at least one component) is eventually of constant sign.

DEFINITION 2. We shall say that the system (S_1) has the property A if for n even every solution $y \in W$ is oscillatory and for n odd it is either oscillatory or