Componentwise error estimates for approximate solutions to systems of equations with the aid of Dahlquist constants

Hisayoshi Shintani

(Received September 20, 1985)

1. Introduction

For
$$f: D \subset \mathbb{R}^n \to \mathbb{R}^n$$
 consider the equation

$$(1.1) x = f(x), \quad x \in D,$$

where D is a path-connected set. Let the l.u.b. Lipschitz constant of f over D be defined by

(1.2)
$$L(f) = \sup_{x, y \in D, x, \neq y} ||f(x) - f(y)|| / ||x - y||,$$

where $\|\cdot\|$ is a given norm in \mathbb{R}^n . Then it is known [1] that if L(f) < 1 and there exists an $x^{(0)} \in D$ such that

(1.3)
$$S = \{h; \|h - x^{(0)}\| \leq L(f) \|x^{(1)} - x^{(0)}\| / (1 - L(f))\} \subset D,$$

then (1.1) has exactly one solution x^* in D and

(1.4)
$$\|x^{(1)} - x^*\| \leq L(f) \|x^{(1)} - x^{(0)}\| / (1 - L(f)),$$

where $x^{(1)} = f(x^{(0)})$.

When L(f) is finite, the Dahlquist constant of f over D (see [3]) is defined by

(1.5)
$$d(f) = \lim_{h \to +0} (L(I+hf)-1)/h.$$

Söderlind [2] has shown that if x^* is a solution of (1.1), $x^{(0)}$, $x^{(1)} \in D$ and d(f) < 1, then

(1.6)
$$\|x^* - x^{(1)}\| \leq L(f) \|x^{(1)} - x^{(0)}\|/(1 - d(f)),$$

where $x^{(1)} = f(x^{(0)})$. Since $d(f) \le L(f)$, the estimate (1.6) gives a smaller error bound than (1.4) when d(f) < L(f) and especially when d(f) < 0.

For $x = (x_1, x_2, ..., x_n)^T$ and $y = (y_1, y_2, ..., y_n)^T \in C^n$, let $v(x) = (|x_1|, |x_2|, ..., |x_n|)^T$ and write $x \ge y$ if x_i and y_i are real and $x_i \ge y_i$ (i = 1, 2, ..., n). Denote by $\sigma(A)$ the spectral radius of an $n \times n$ matrix A. For real $n \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$ write $A \ge B$ if $a_{ij} \ge b_{ij}$ (i, j = 1, 2, ..., n). Then Urabe [5] has shown that if there exists a matrix $K \ge 0$ such that