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1. Introduction

This paper studies the existence and nonexistence of global solutions for

(1.1) Aw——(%x-Vw+aw>+IwP”w==0
in R" for various p>1, =0, where x-V =31_, x,0/0x;.
In [8] we studied the blow-up of solutions of the semilinear heat equation

(1.2) u, — Au — |u|P~'u = 0.

We have shown that the asymptotic behavior near the blow-up time is described
by special solutions of (1.2) called backward self-similar solutions, i.e., functions
of the form

(1.3) u(x, 1) = (— 1)~V e Dy(x/(—1)!/2)

which solve (1.2) in R" x(— o0, 0); see also [7]. Plugging (1.3) in (1.2) yields
an elliptic equation (1.1) for w with a=1/(p—1).

In [8] we have proved that (1.1) has no bounded global solutions except
constant solutions provided a=1/(p—1) and n/2=<(p+1)/(p—1) (equivalently,
p=(n+2)/(n—2) or n=2). In this paper « is considered a parameter. It turns
out that 1/(p—1) is a ‘bifurcation point’, namely, thereis a nonconstant bounded
global solution to (1.1) provided a>1/(p—1) and n/2<(p+1)/(p—1). For
technical reasons we confine ourselves to radial functions, i.e., functions depending
only on r=|x|. A radial function w is called radially decreasing if w is monoto-
nically decreasing as a function of r>0.

THEOREM 1. (Existence) There is a positive radially decreasing solution
w of (1.1) in R provided a>1/(p—1) and n[2<(p+1)/(p—1).

THEOREM 2. (Asymptotic behavior) A positive radially decreasing so-
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