Bessel capacity of symmetric generalized Cantor sets

Kaoru Hatano

(Received June 26, 1986)

§1. Introduction

In [8] M. Ohtsuka obtained a necessary and sufficient condition for a symmetric generalized Cantor set to be of zero α -(or logarithmic-) capacity. In the non-linear potential theory the Bessel capacity of Cantor sets of special type was estimated in Maz'ya and Khavin [6]. In order to explain their results, let us recall the definitions of Bessel capacity and symmetric generalized Cantor sets.

Let $g_{\alpha} = g_{\alpha}(x)$ be the Bessel kernel of order α , $0 < \alpha < \infty$, on the *n*-dimensional Euclidean space R^n $(n \ge 1)$, whose Fourier transform is $(1 + |\xi|^2)^{-\alpha/2}$. The Bessel capacity $B_{\alpha,p}$ is defined as follows: For a set $A \subset R^n$,

$$B_{\alpha,p}(A) = \inf \int f(x)^p dx,$$

the infimum being taken over all functions $f \in L_p^+$ such that

$$g_{\alpha} * f(x) \ge 1$$
 for all $x \in A$.

We shall always assume that $1 and <math>0 < \alpha p \leq n$.

Let $\{k_j\}_{j=1}^{\infty}$ be a sequence of integers and $\{\ell_j\}_{j=0}^{\infty}$ be a sequence of positive numbers such that $k_j \ge 2$ and $k_{j+1}\ell_{j+1} < \ell_j$ $(j \ge 0)$. Let $\delta_{j+1} = (\ell_j - k_{j+1}\ell_{j+1})/(k_{j+1}-1)$ (j=0, 1,...). Let *I* be a closed interval of length ℓ_0 in \mathbb{R}^1 . In the first step, we remove from *I* (k_1-1) open intervals each of the same length δ_1 so that k_1 closed intervals $I_i^{(1)}$ $(i=1,...,k_1)$ each of length ℓ_1 remain. Set $E^{(1)} = \bigcup_{i=1}^{k_1} I_i^{(1)}$. Next in the second step, we remove from each $I_i^{(1)}$ (k_2-1) open intervals each of the same length δ_2 so that k_2 closed intervals $I_{i,j}^{(2)}$ $(j=1,...,k_2)$ each of length ℓ_2 remain. We set $E^{(2)} = \bigcup_{i=1}^{k_1} \bigcup_{j=1}^{k_2} I_{i,j}^{(2)}$. We continue this process and obtain $E^{(j)}$, $j \ge 1$. We define $E = \bigcap_{j=1}^{\infty} E_n^{(j)}$, where the set $E_n^{(j)} = E^{(j)} \times \cdots \times E^{(j)}$ is the product set of $n E^{(j)}$'s in \mathbb{R}^n . We call the set *E* the *n*dimensional symmetric generalized Cantor set constructed by the system $[\{k_j\}_{j=1}^{\infty}, \{\ell_j\}_{i=0}^{\infty}]$.

The Cantor set E considered by Maz'ya and Khavin [6] is the one constructed as above with $k_j=2$ for all $j \ge 1$. For such a Cantor set E, they proved the following theorem.

THEOREM A. If $\alpha p < n$, then