On wild knots which are weakly tame

Osamu KAKIMIZU

(Received May 17, 1986)

1. Introduction

In this paper, we are concerned mainly with knots, by which we mean topologically embedded circles in the 3-sphere S^3 .

Let X be a subset of S³. Then, X is PL if it is a subpolyhedron of S³, tame if h(X) is PL for some homeomorphism $h: S^3 \approx S^3$, and wild if it is not tame. Furthermore, X is locally tame at $x \in X$ if there are an open set $V \ni x$ in S³ and a homeomorphism $\phi: V \approx E^3$ such that $\phi(V \cap X)$ is a subpolyhedron of E^3 (E^n denotes the Euclidean *n*-space), and when X is a knot, X is locally flat at $x \in X$ if $\phi(V \cap X) = E^1$ in addition. For a knot $J \subset S^3$, we note that these local properties are equivalent to each other, and consider the closed subset

$$E(J) = \{x \in J \mid J \text{ is not locally tame at } x\} \subset J.$$

Then, Bing's theorem [2] says that J is tame if and only if E(J) is empty.

We shall say that a knot $J \subset S^3$ is weaky tame if there is a PL knot $K \subset S^3$ such that the complement $S^3 - K$ is homeomorphic to $S^3 - J$, and weakly flat according to Duvall [7] if K is unknotted in addition; and we shall study several properties of such a knot J by taking notice of the set E(J).

The main results are stated as follows.

THEOREM I. Assume that a knot $J \subset S^3$ is weakly tame, and let U be an open set in J. Then, J is locally tame at every point $x \in U$ if so is at every point $x \in U - C^*$, where C^* is a Cantor set in U.

COROLLARY. If a knot $J \subset S^3$ is weakly tame, then E(J) has no isolated points. If J is locally tame at every point $x \in J - C^*$ for a Cantor set $C^* \subset J$ in addition, then it turns out that E(J) is empty and J is tame.

Theorem I means that E(J) for a weakly tame knot J can not be 0-dimensional. In contrast with this we can find a weakly tame knot J with 1-dimensional E(J): most significant one is given by the following

THEOREM II. For each PL knot $K \subset S^3$, there is a wild knot $J \subset S^3$ such that $S^3 - J$ is homeomorphic to $S^3 - K$ and J is everywhere wild, i.e., E(J) = J.

A proof of Theorem I using Cannon's characterization of tame arcs in S^3