An operator theoretic method for solving $u_t = \Delta \psi(u)$

Yoshikazu Kobayashi

(Received May 13, 1986)

1. Introduction

(1.2)

In this paper, we present a new method for solving the Cauchy problem

(1.1)
$$u_t(t, x) = \Delta \psi(u(t, x)), \quad t > 0 \quad \text{and} \quad x \in \mathbb{R}^N,$$
$$u(0, x) = u_0(x), \ x \in \mathbb{R}^N,$$

where ψ is a locally Lipschitz continuous and nondecreasing function on **R** such that $\psi(0)=0$; and the method is described from the point of view of the nonlinear semigroup theory.

For $u_0 \in L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$, a function $u \in L^{\infty}((0, \infty) \times \mathbb{R}^N)$ is called a weak solution of the problem (1.1) if $u \in C([0, \infty); L^1(\mathbb{R}^N))$ as an $L^1(\mathbb{R}^N)$ -valued function on $[0, \infty)$,

$$\int_0^\infty \left(\int_{\mathbb{R}^N} u(t, x) f_t(t, x) + \psi(u(t, x)) \Delta f(t, x) dx \right) dt = 0$$

for any $f \in C_0^{\infty}((0, \infty) \times \mathbb{R}^N)$ and $u(0, x) = u_0(x)$ a.e.. The existence of weak solutions is established in [1] (in a more general situation) and the uniqueness is proved in [3]. (See also [2] and [11].)

To state the new method for solving the Cauchy problem, let ρ be an arbitrary but fixed rapidly decreasing function on \mathbb{R}^N which satisfies

$$\begin{cases} \rho \ge 0, \quad \int_{\mathbb{R}^N} \rho(\xi) d\xi = 1, \quad \int_{\mathbb{R}^N} \xi_i \rho(\xi) d\xi = 0 \\ \text{and} \\ \int_{\mathbb{R}^N} \xi_i \xi_j \rho(\xi) d\xi = \delta_{ij}, \quad \text{ for } i, j = 1, 2, \cdots, N, \end{cases}$$

where $\delta_{ij}=1$ if i=j and $\delta_{ij}=0$ otherwise. (For example, we can choose the (normalized) Gaussian kernel $(2\pi)^{-N/2} \exp(-|\xi|^2/2)$ as such $\rho(\xi)$.) We set

(1.3)
$$\rho_h(\xi,\eta) = \left(\frac{h}{2\psi'_h(\eta)}\right)^{N/2} \rho\left(\left(\frac{h}{2\psi'_h(\eta)}\right)^{1/2}\xi\right)$$

for $(\xi, \eta) \in \mathbb{R}^N \times \mathbb{R}$ and h > 0, where $\{\psi_h\}_{h>0}$ is a family of smooth strictly increasing functions on \mathbb{R} such that $\psi_h(0) = 0$, $\psi_h(\eta) \rightarrow \psi(\eta)$ as $h \downarrow 0$, uniformly for bounded