A Hausdorff-Young inequality for the Fourier transform on Riemannian symmetric spaces

Masaaki EGUCHI¹⁾, Shin KOIZUMI¹⁾ and Shohei TANAKA²⁾ (Received May 13, 1986)

§1. Introduction

Let G/K be a Riemannian symmetric space of non-compact type. In [1] spherical Fourier transforms of left K-invariant L^p (1 functions on <math>G/K are studied and it is shown that the spherical transforms of these functions are extended holomorphically to a certain domain T_p , which is determined only by p, in a_C^* and a Hausdorff-Yong inequality holds. We adopt $\pi_v(f) = \int_G f(x)\pi_v(x)dx$ as the Fourier transform of $f \in C_0^{\infty}(G/K)$; here π_v denotes the induced representation of class one from the minimal parabolic subgroup P of G. The purpose of this paper is to show that the Fourier transforms of K-finite L^p functions on G/K also satisfy a Hausdorff-Young type inequality in the domain T_p similar to the spherical case.

§ 2. Notation and Preliminaries

Let G be a connected semisimple Lie group with finite center and g its Lie algebra. We denote by $\langle \cdot, \cdot \rangle$ the Killing form of g. Let G = KAN be an Iwasawa decomposition and f, a and n the Lie subalgebras of g corresponding to K, A and N respectively. Each $x \in G$ can be written uniquely as $x = \kappa(x) \cdot \exp H(x)n(x)$, where $\kappa(x) \in K$, $H(x) \in a$ and $n(x) \in N$. Let M' and M be the normalizer and the centralizer of a in K respectively and denote by W = M'/Mthe Weyl group. Throughout this paper, we denote the dual space of a real or complex vector space V by V* and the complexification of a real vector space V by V_c . We fix an ordering on a* which is compatible with the above Iwasawa decomposition. Let Σ denote the set of all positive roots of (g, a) and $m(\alpha)$ the multiplicity of $\alpha \in \Sigma$. Let Σ_0 be the set of elements in Σ which are not integral multiples of other elements in Σ . We put $a(\alpha) = m(\alpha) + m(2\alpha)$ for $\alpha \in \Sigma_0$ and $\rho = 2^{-1} \sum_{\alpha \in \Sigma} m(\alpha) \alpha$. Let a_+^* be the positive Weyl chamber of a^* and put

$$\mathfrak{a}_{+} = \{ H \in \mathfrak{a} \, | \, \alpha(H) > 0 \text{ for all } \alpha \in \mathfrak{a}_{+}^{*} \}; \quad A^{+} = \exp \mathfrak{a}_{+} .$$

For any $\varepsilon \ge 0$, we put

$$C_{\varepsilon\rho} = \{\lambda \in \mathfrak{a}^* \mid |(s\lambda)(H)| \le \varepsilon \rho(H) \text{ for all } H \in \mathfrak{a}_+ \text{ and } s \in W\}.$$