Normality, seminormality and quasinormality of $\mathbb{Z}[\sqrt[n]{m}]$

Dedicated to Professor Masayoshi Nagata on his 60th birthday

Hiroshi Талімото

(Received March 11, 1986)

Introduction

In [11], Ooishi gave a necessary and sufficient condition for $Z[\sqrt{m}]$ to be seminormal. In this paper, we will study $Z[\sqrt[n]{m}]$ and give the criteria for $Z[\sqrt[n]{m}]$ to be normal, *p*-seminormal, seminormal and quasinormal. First, we treat the normality of $Z[\sqrt[n]{m}]$. Next, we construct some elements which are integral over Z. Then using these elements, we study the *p*-seminormality, the seminormality and the quasinormality of $Z[\sqrt[n]{m}]$.

The writer heartily thanks Prof. H. Matsumura who gave him continuous encouragement.

§1. Notation, terminology and preliminary results

Let A be a noetherian reduced ring. If the canonical homomorphism Pic $A \rightarrow \text{Pic } A[X]$ (or Pic $A \rightarrow \text{Pic } A[X, X^{-1}]$) is an isomorphism, where X is a variable, A is said to be seminormal (or quasinormal, resp.), and for an integer p if the kernel of Pic $A[X] \rightarrow \text{Pic } A$ has no p-torsion, A is said to be p-seminormal. These are chracterized as follows. The seminormality (or the p-seminormality) of A is equivalent to that if $x \in Q(A)$ satisfies x^2 , $x^3 \in A$ (or x^2 , x^3 , $px \in A$, resp.), then $x \in A$ (cf. [5] or [12]). On the other hand in the case that dim A = 1 and A is a domain, A is quasinormal if and only if the following conditions are satisfied: (1) A is seminormal, and (2) if $x \in Q(A)$ satisfies $x^2 - x$, $x^3 - x^2 \in A$, then $x \in A$ (cf. [10]). These are our main tools in this paper. Now normality, seminormality and p-seminormal) if and only if so is A_m for all maximal ideals m of A (cf. [12]). If dim A = 1 and A is a domain, quasinormality is a local property (cf. [2]). For an ideal a of A, we write $V(a) = \{p \in \text{Spec } A | a \subseteq p\}$. And we denote the normalization of A in Q(A) by \tilde{A} .

We denote the set of natural numbers by N, the set of integers by Z, the set of rational numbers by Q and the prime field of characteristic p by F_p .

Throughout this paper, m and n are integers with $n \ge 2$. Moreover when $X^n - m$ is an irreducible polynomial over Z, we denote a root of $X^n - m = 0$ by $\sqrt[n]{m}$.