Normality, seminormality and quasinormality of $\mathbf{Z}[\sqrt[n]{m}]$

Dedicated to Professor Masayoshi Nagata on his 60th birthday

Hiroshi Tanimoto

(Received March 11, 1986)

Introduction

In [11], Ooishi gave a necessary and sufficient condition for $\boldsymbol{Z}[\sqrt{m}]$ to be seminormal. In this paper, we will study $\boldsymbol{Z}[\sqrt[n]{m}]$ and give the criteria for $\boldsymbol{Z}[\sqrt[n]{m}]$ to be normal, p-seminormal, seminormal and quasinormal. First, we treat the normality of $Z[\sqrt[n]{m}]$. Next, we construct some elements which are integral over \boldsymbol{Z}. Then using these elements, we study the p-seminormality, the seminormality and the quasinormality of $Z[\sqrt[n]{m}]$.

The writer heartily thanks Prof. H. Matsumura who gave him continuous encouragement.

§ 1. Notation, terminology and preliminary results

Let A be a noetherian reduced ring. If the canonical homomorphism Pic $A \rightarrow \operatorname{Pic} A[X]$ (or Pic $A \rightarrow \operatorname{Pic} A\left[X, X^{-1}\right]$) is an isomorphism, where X is a variable, A is said to be seminormal (or quasinormal, resp.), and for an integer p if the kernel of Pic $A[X] \rightarrow \operatorname{Pic} A$ has no p-torsion, A is said to be p-seminormal. These are chracterized as follows. The seminormality (or the p-seminormality) of A is equivalent to that if $x \in Q(A)$ satisfies $x^{2}, x^{3} \in A$ (or $x^{2}, x^{3}, p x \in A$, resp.), then $x \in A$ (cf. [5] or [12]). On the other hand in the case that $\operatorname{dim} A=1$ and A is a domain, A is quasinormal if and only if the following conditions are satisfied: (1) A is seminormal, and (2) if $x \in Q(A)$ satisfies $x^{2}-x, x^{3}-x^{2} \in A$, then $x \in A$ (cf. [10]). These are our main tools in this paper. Now normality, seminormality and p-seminormality are local properties, that is, A is normal (or seminormal, p-seminormal) if and only if so is A_{m} for all maximal ideals m of A (cf. [12]). If $\operatorname{dim} A=1$ and A is a domain, quasinormality is a local property (cf. [2]). For an ideal \mathfrak{a} of A, we write $V(\mathfrak{a})=\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p}\}$. And we denote the normalization of A in $Q(A)$ by \tilde{A}.

We denote the set of natural numbers by N, the set of integers by \boldsymbol{Z}, the set of rational numbers by \boldsymbol{Q} and the prime field of characteristic p by \boldsymbol{F}_{p}.

Throughout this paper, m and n are integers with $n \geqq 2$. Moreover when $X^{n}-m$ is an irreducible polynomial over \boldsymbol{Z}, we denote a root of $X^{n}-m=0$ by $\sqrt[n]{m}$.

