Cuts of ordered fields

Daiji Kıima
(Received November 5, 1986)

We denote an ordered field by (F, σ) or simply F, where σ is an ordering of a field F. For ordered fields (F, σ) and (K, τ), we say that K / F is an extension of ordered fields if K / F is an extension of fields and τ is an extension of σ. In this paper, $F(x)$ always means a simple transcendental extension of F. A pair (C, D) of subsets of F is called a cut of F if $C \cup D=F$ and $c<d$ for any $c \in C$ and $d \in D$. Let $(F(x), \tau) /(F, \sigma)$ be an extension of ordered fields. Then $g(\tau):=(C, D)$, where $C=\{a \in F ; a<x\}$ and $D=\{a \in F ; a>x\}$, is a cut of F. If F is a real closed field, then g is a bijective map from the set of all orderings of $F(x)$ to the set of all cuts of F (Theorem 1.2). In [2], we defined the rank of an ordered field and we said that an ordered field F is a maximal ordered field of rank n if $\operatorname{rank} F=n$ and for any proper extension K / F of ordered fields, rank $K>n$.

Let F be a real closed field of finite rank n and let $A_{1} \subset \cdots \subset A_{n} \subset A_{n+1}=F$ be the compatible valuation rings of F. In this paper, we define the subsets W_{i}, $i=1, \ldots, n+1$, of the set of all cuts of F (Definition 3.4) and show that for an ordering τ of $F(x)$, the following statements are equivalent (Theorem 3.10):
(1) $g(\tau) \in W_{i}$.
(2) There exist distinct convex valuation rings B and B^{\prime} of $F(x)$ with respect to τ such that $B \cap F=B^{\prime} \cap F=A_{i}$.

As a corollary of the above assertion, we have the following statement: $\operatorname{rank}(F(x), \tau)=\operatorname{rank} F+1$ if and only if $g(\tau) \in \cup_{i=1}^{n+1} W_{i}$. In particular, F is a maximal ordered field if and only if any cut of F is contained in $\cup_{i=1}^{n+1} W_{i}$.

§ 1. Real closed fields and cuts

Let F be an ordered field. If C and D are subsets of F, we write $C<D$ if $c<d$ for all $c \in C, d \in D$. If $a \in F$, then we write $C<a$ or $a<D$ instead of $C<\{a\}$ or $\{a\}<D$, respectively. A pair (C, D) of subsets of F is called a cut of F if $F=$ $C \cup D$ and $C<D$. We regard (F, ϕ) and (ϕ, F) as cuts of F. Throughout this paper, we denote by X the set of orderings σ of $F(x)$ where $(F(x), \sigma) / F$ is an extension of ordered fields. Let C_{F} be the set of all cuts of F. We define the map $g_{F}: X \rightarrow C_{F}$ by $g_{F}(\sigma)=(C, D)$, where $C=\{c \in F ; c<x(\sigma)\}$ and $D=\{d \in F ; x<d(\sigma)\}$; here we write $a<b(\sigma)$ if $a<b$ with respect to the ordering σ. It is well known that there is an ordering $\sigma \in X$ such that $F<x(\sigma)$ and it is uniquely determined (cf. [1]). In this case, it is clear that $g_{F}(\sigma)=(F, \phi)$.

