HIROSHIMA MATH. J. 17 (1987), 337–347

Cuts of ordered fields

Daiji Кілма

(Received November 5, 1986)

We denote an ordered field by (F, σ) or simply F, where σ is an ordering of a field F. For ordered fields (F, σ) and (K, τ) , we say that K/F is an extension of ordered fields if K/F is an extension of fields and τ is an extension of σ . In this paper, F(x) always means a simple transcendental extension of F. A pair (C, D)of subsets of F is called a cut of F if $C \cup D = F$ and c < d for any $c \in C$ and $d \in D$. Let $(F(x), \tau)/(F, \sigma)$ be an extension of ordered fields. Then $g(\tau) := (C, D)$, where $C = \{a \in F; a < x\}$ and $D = \{a \in F; a > x\}$, is a cut of F. If F is a real closed field, then g is a bijective map from the set of all orderings of F(x) to the set of all cuts of F (Theorem 1.2). In [2], we defined the rank of an ordered field and we said that an ordered field F is a maximal ordered field of rank n if rank F = nand for any proper extension K/F of ordered fields, rank K > n.

Let F be a real closed field of finite rank n and let $A_1 \subset \cdots \subset A_n \subset A_{n+1} = F$ be the compatible valuation rings of F. In this paper, we define the subsets W_i , $i=1,\ldots, n+1$, of the set of all cuts of F (Definition 3.4) and show that for an ordering τ of F(x), the following statements are equivalent (Theorem 3.10):

(1) $g(\tau) \in W_i$.

(2) There exist distinct convex valuation rings B and B' of F(x) with respect to τ such that $B \cap F = B' \cap F = A_i$.

As a corollary of the above assertion, we have the following statement: rank $(F(x), \tau)$ = rank F+1 if and only if $g(\tau) \in \bigcup_{i=1}^{n+1} W_i$. In particular, F is a maximal ordered field if and only if any cut of F is contained in $\bigcup_{i=1}^{n+1} W_i$.

§1. Real closed fields and cuts

Let F be an ordered field. If C and D are subsets of F, we write C < D if c < d for all $c \in C$, $d \in D$. If $a \in F$, then we write C < a or a < D instead of $C < \{a\}$ or $\{a\} < D$, respectively. A pair (C, D) of subsets of F is called a cut of F if $F = C \cup D$ and C < D. We regard (F, ϕ) and (ϕ, F) as cuts of F. Throughout this paper, we denote by X the set of orderings σ of F(x) where $(F(x), \sigma)/F$ is an extension of ordered fields. Let C_F be the set of all cuts of F. We define the map $g_F: X \to C_F$ by $g_F(\sigma) = (C, D)$, where $C = \{c \in F; c < x(\sigma)\}$ and $D = \{d \in F; x < d(\sigma)\}$; here we write $a < b(\sigma)$ if a < b with respect to the ordering σ . It is well known that there is an ordering $\sigma \in X$ such that $F < x(\sigma)$ and it is uniquely determined (cf. [1]). In this case, it is clear that $g_F(\sigma) = (F, \phi)$.