On the boundary limits of harmonic functions

Yoshihiro MIZUTA

(Received July 29, 1987)

1. Introduction

This paper deals with the boundary behavior of harmonic functions u on a bounded open set $G \subset \mathbb{R}^n$ satisfying

$$\int_{G} |\operatorname{grad} u(x)|^{p} \omega(x) dx < \infty,$$

where p > 1 and ω is a nonnegative measurable function on G. The function $\omega(x)$ is mainly of the form $\varphi(d(x))$, where d(x) denotes the distance of x from the boundary ∂G and φ is a monotone function on the interval $(0, \infty)$. Moreover, G is assumed to satisfy certain smoothness conditions mentioned later.

Our first aim in this paper is to find a positive function A(x) on G for which A(x)u(x) tends to zero as x tends to the boundary ∂G . We shall next give conditions which assure the boundedness of u on G or near a boundary point of G. In special cases, u will be shown to have a finite limit at a boundary point; our discussion below will include the proof of the existence of nontangential limits.

We here remark that the case p=1 can be treated similarly with a small modification.

2. Boundary limits of harmonic functions on general bounded domains

Throughout this paper, let G be a bounded domain in \mathbb{R}^n satisfying the following condition: There exist a compact set K and a positive number c such that any point x in G is joined to K by a piecewise smooth curve x(t) in G having the following properties:

$$(C_1) \quad x(1) \in K.$$
 $(C_2) \quad x(0) = x.$

(C₃)
$$|x(t_2) - x(t_1)| \le c(t_2 - t_1)|x(0) - x(1)|$$
 whenever $0 \le t_1 \le t_2 \le 1$.

- (C₄) $|x(t_2) x(t_1)| \ge c^{-1}(t_2 t_1)|x(0) x(1)|$ whenever $0 \le t_1 \le t_2 \le 1$.
- (C₅) If $y \in B(x(t), 2^{-1}d(x(t)))$, then d(x) + |x y| < cd(y).

REMARK. Condition (C_4) implies the following:

(C₆) For any $y \in G$, the linear measure of the set of all t such that $y \in B(x(t), 2^{-1}d(x(t)))$ is dominated by $M|x(0) - x(1)|^{-1}d(y)$,