On Hasse-Witt matrices of Fermat varieties

Keisuke Toki

(Received May 19, 1987)

Introduction

Let X be an n-dimensional Fermat variety of degree d

$$x_0^d + x_1^d + \dots + x_{n+1}^d = 0$$
 $(d \ge n+2)$

in \mathbf{P}^{n+1} , where $x_0, x_1, ..., x_{n+1}$ are homogeneous coordinates. We are concerned with the *p*-th power frobenius action *F* on the *n*-th cohomology group $H^n(X, \mathcal{O}_X)$ of *X* over an algebraic closure *k* of the field \mathbf{F}_p (p > 0; $p \not\mid d$). The *F*-module $H^n(X, \mathcal{O}_X)$ is canonically isomorphic to the G_h -module $H^{n+1}(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d))$, and we know that the vector space $H^{n+1}(\mathbf{P}^{n+1}, \mathcal{O}_{\mathbf{P}^{n+1}}(-d))$ has as basis \mathscr{W}_0 (cf. §1). We now consider the matrix (the so-called Hasse-Witt matrix) HW(X) of G_h with respect to \mathscr{W}_0 .

In this paper, we show mainly the following theorems:

THEOREM I. For positive integers n, d and p (p; prime number with $p \nmid d$ and $d \ge n+2$) given as above, we let ρ_i be the number of all elements in \mathscr{W}_0 of type i defined in §1. We can arrange the ρ_i 's by some integers $f_0 > f_1 > \cdots > f_r > 0$ as follows:

$$\begin{aligned} \rho_i &= 0 \quad for \quad i > f_0, \quad \rho_{f_s} = \rho_i < \rho_{f_{s+1}} \quad for \quad f_s \ge i > f_{s+1} \\ and \quad s < r, \quad \rho_{f_r} = \rho_i \le \rho_0 \quad for \quad f_r \ge i \ge 1. \end{aligned}$$

We denote by $HW(X)_{nilp}$ the nilpotent part of HW(X) at p. Then the normal form of $HW(X)_{nilp}$ becomes the matrix

$$\begin{pmatrix} \Lambda(1) & & & 0 \\ \Lambda(2) & & & \\ & \ddots & & \\ & & \Lambda(\rho_{f_r}) & & \\ & & 0 & & \\ 0 & & & \ddots & \\ 0 & & & \ddots & 0 \end{pmatrix} \} \rho_0 - \rho_f,$$

with $\Lambda(\rho) = \Lambda_{f_{\alpha}+1}$ for $\rho_{f_{\alpha}-1} < \rho \leq \rho_{f_{\alpha}}$, $\alpha = 0, 1, ..., r$, where $\rho_{f_{-1}} = 0$, and each