Boundary behavior of *p*-precise functions on a half space of R^n

Yoshihiro MIZUTA (Received May 14, 1987)

1. Introduction

Let u be a function which is locally p-precise in $D = \{x = (x_1, ..., x_n); x_n > 0\}, n \ge 2$, and satisfies

(1)
$$\int_{D} |\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} dx < \infty, \quad 1 < p < \infty, \quad -1 < \alpha < p - 1$$

(see Ohtsuka [12] for (locally) *p*-precise functions). Many authors have tried to find a set $F \subset D$ such that u(x) has a finite limit as x tends to the boundary ∂D along F (see Aikawa [1], Carleson [2], Mizuta [5], [7], [8], [9], Wallin [13]). They were mainly concerned with the nontangential case, that is, the case where $F = \ell_{\xi} \equiv \{\xi + (0, t); t > 0\}$ or $F = \Gamma(\xi, a) \equiv \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R}^1; |x' - \xi'| < ax_n\};$ if u(x) has a finite limit as $x_n \downarrow 0$ along ℓ_{ξ} , then u is said to have a perpendicular limit at ξ , and if u(x) has a finite limit as $x \to \xi$ along $\Gamma(\xi, a)$ for any a > 0, then u is said to have a nontangential limit at ξ . The existence of tangential limits of u at ξ was discussed by Aikawa [1] and Mizuta [9]. The proof of the existence of these limits can be carried out by local arguments; in fact it requires to find conditions near ξ which assure the existence of limits.

In this paper we investigate a global behavior of u near the boundary ∂D . More precisely, we aim to find a function A(x) such that A(x)u(x) tends to zero as x tends to ∂D along a set $F \subset D$. In order to evaluate the size of F, we use the capacity:

$$C_p(E; G) = \inf \|f\|_p^p$$
,

where the infimum is taken over all nonnegative measurable functions f on \mathbb{R}^n such that f=0 outside G and $\int_G |x-y|^{1-n} f(y) dy \ge 1$ for every $x \in E$; $\|\cdot\|_p$ denotes the L^p -norm in \mathbb{R}^n . As in Aikawa [1], we introduce a notion of thinness of a set in D, near the boundary ∂D ; we say that a set E is C_p -thin near ∂D if there exists a positive integer j_0 such that

in case
$$p < n$$
, $\sum_{j=j_0}^{\infty} 2^{j(n-p)} C_p(E_j; D) < \infty$,
in case $p = n$, $\sum_{j=j_0}^{\infty} C_p(E_j \cap G_1; G_2) < \infty$