Convergence of sum product of a martingale difference sequence

Hiroshi SATO

(Received May 13, 1987)

1. Introduction

Let $\{x_k(t)\}_{k\in\mathbb{N}}$ (*N* is the collection of all natural numbers) be a sequence of complex functions on [0, 1] such that $x_k(t) + 1 \neq 0$ for every $t \in [0, 1]$. Then the convergence of the product $\prod_k (1 + x_k(t))$ has been investigated by many authors in connection with the convergence of the sum $\sum_k x_k(t)$. For example G. H. Hardy [1] proved that if $\{a_k\}$ is a sequence of positive numbers which converges monotonically to zero and $\sum_k a_k^n$ diverges for every $n \in \mathbb{N}$, then $\prod_k (1 + a_k e^{2\pi i k t})$ diverges for every rational number t. J. E. Littlewood [2] proved that if $\{a_k\}$ is a sequence of positive numbers converges monotonically to zero, then $\prod_k (1 + a_k e^{2\pi i k t})$ converges for every irrational number t with possible exception of the Liouville numbers. In the measure theoretical point of view, L. Carleson's theorem implies that if $\sum_k |a_k|^2 < +\infty$, then $\prod_k (1 + a_k e^{2\pi i k t})$ converges almost surely. All of these discussions concerned the convergence or the divergence of $\sum_k a_k e^{2\pi i k t}$.

The author investigated this problem from the probabilistic point of view and proved in [4] that if $\{X_k\}$ is a sequence of independent random variables with mean zero such that $1+X_k>0$, a.s., for every k, then the almost sure convergence of $\prod_k (1+X_k)$ is equivalent to that of $\sum_k X_k$. In this paper we shall extend this result to a martingale difference sequence and prove the following theorem.

THEOREM 1. Let $\{X_k, \mathscr{B}_k\}$ be a martingale difference sequence such that $X_k+1>0$, a.s., for every k. Then $\prod_k (1+X_k)$ converges almost surely if and only if $\sum_k X_k$ converges almost surely.

As an application we shall give a new criterion for the absolute continuity of locally equivalent measures.

2. Proof of Theorem 1

A sequence of random variables $\{X_k\}$ is a submartingale difference sequence iff X_k is \mathscr{B}_k -measurable and

$$\boldsymbol{E}[X_{k+1} | \mathscr{B}_k] \ge 0, \quad \text{a.s.},$$