Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits

Toshihiko MATSUKI (Received May, 7, 1987)

§1. Introduction

Let G be a connected Lie group, σ an involution of G and H an open subgroup of $G^{\sigma} = \{x \in G \mid \sigma x = x\}$. Then the G-homogeneous manifold $H \setminus G$ is called an affine symmetric space. Suppose that G is a real semisimple Lie group. Let P be a minimal parabolic subgroup of G and P' a parabolic subgroup of G containing P. Then the double coset decomposition $H \setminus G/P$ is studied in [2], and [5], the relation between $H \setminus G/P'$ and $H \setminus G/P$ is studied in [3], and the closure relation for $H \setminus G/P$ is studied in [4].

Let θ be a Cartan involution of G such that $\sigma \theta = \theta \sigma$. Put $K = G^{\theta}$ and let H^{a} be the open subgroup of $G^{\sigma\theta}$ such that $K \cap H = K \cap H^{a}$. Then $H^{a} \setminus G$ is called the affine symmetric space associated to $H \setminus G$. Let A be a θ -stable split component of P and put $U = \{x \in K \mid xAx^{-1} \text{ is } \sigma\text{-stable}\}$.

There exists a natural one-to-one correspondence between the double coset decompositions $H \setminus G/P'$ and $H^a \setminus G/P'$ given by $D \to D^a = H^a(D \cap U)P'$ for H - P' double cosets D in G ([2], [3]). Moreover it follows easily from Corollary of Theorem in [4] that this correspondence reverses the closure relations for the double coset decompositions. In this paper we prove the following theorem.

THEOREM. Let D_1 and D_2 be arbitrary H-P' double cosets in G. Then we have the following.

(i) $D_1^{c_1} \supset D_2 \Leftrightarrow D_1 \cap D_2^a \neq \emptyset$.

(ii) Let $I(D_1, D_2)$ be the set of all the H-P' double cosets D in G such that $D_1^{c_1} \supset D^{c_1} \supset D_2$. Then

$$(D_1 \cap D_2^{a})^{c_1} \cap D_2^{a} = \bigcup_{D \in I(D_1, D_2)} D \cap D_2^{a}.$$

(iii) Let x be an element of U. Then $HxP' \cap H^axP' = (K \cap H)xP'$.

(iv) $D_1 \cap D_2^a$ is nonempty and closed in $G \Leftrightarrow D_1 = D_2$.

Example. Let G_1 be a connected semisimple Lie group, θ_1 a Cartan involution of G_1 , $K_1 = \{x \in G_1 | \theta_1 x = x\}$, and P_1 a minimal parabolic subgroup of G_1 with a θ_1 -stable split component A_1 . Let P'_1 and P''_1 be parabolic subgroups of