On Lie algebras in which every subalgebra is a subideal

Masanobu HONDA (Received December 2, 1987)

Introduction

Heineken and Mohamed [4] have constructed a Fitting, metabelian group with trivial centre in which every subgroup is subnormal. In Lie theory, Unsin [10] has constructed a Fitting, metabelian Lie algebra with trivial centre in which every subalgebra is a subideal. As in group theory, the class \mathfrak{D} of Lie algebras in which every subalgebra is a subideal is one of the typical classes of generalized nilpotent Lie algebras.

Recently Brookes [2] has proved that a hyperabelian group in which no nontrivial section is perfect and in which every subgroup is subnormal, is soluble ([2, Theorem A]), and he has concluded that a hypercentral group in which every subgroup is subnormal, is soluble ([2, Corollary A]). Subsequently, generalizing [2, Theorem A], Casolo [3] has proved that a group in which no non-trivial section is perfect and in which every subgroup is subnormal, is soluble ([3, Theorem]). The purpose of this paper is to present the Lie-theoretic analogues of [2, Theorem A and Corollary A] and [3, Theorem].

We shall first prove that $\mathfrak{D}\cap \acute{E}(\lhd)\mathfrak{A}\cap (\acute{E}\mathfrak{A})^Q \leq \mathfrak{E}\mathfrak{A}$ (Corollary 1), where $\acute{E}(\lhd)\mathfrak{A}$ is the class of hyperabelian Lie algebras, $(\acute{E}\mathfrak{A})^Q$ is the largest Q-closed subclass of the class of hypoabelian Lie algebras and $\mathfrak{E}\mathfrak{A}$ is the class of soluble Lie algebras. The group-theoretic analogue of this result is also true and is a slight generalization of [2, Theorem A]. We shall secondly prove that over any field \emph{t} of characteristic zero $\mathfrak{D}\cap (\acute{E}\mathfrak{A})^{QS} \leq \mathfrak{E}\mathfrak{A}$ (Theorem 2), where $(\acute{E}\mathfrak{A})^{QS}$ is the largest Q-, s-closed subclass of the class of hypoabelian Lie algebras and is equal to the class of Lie algebras in which no non-trivial section is perfect.

1.

Throughout this paper we always consider not necessarily finite-dimensional Lie algebras over a field t of arbitrary characteristic unless otherwise specified. Notations and terminology are based on [1]. But for the sake of convenience we list the terms that we use here.

Let L be a Lie algebra over a field f and n be a non-negative integer. By $H \leq L$ (resp. $H \lhd L$, $H \Leftrightarrow L$, $H \lhd {}^nL$, $H \sin L$), we mean that H is a subalgebra (resp. an ideal,