Relations between several Adams spectral sequences

Mizuho HIKIDA

(Received January 18, 1988)

Introduction

In the stable homotopy theory, the G-Adams spectral sequence

(1)
$$E(G) = \{ E(G)_r^{s,t}, d_r: E(G)_r^{s,t} \to E(G)_r^{s+r,t+r-1} \}$$
 abutting to $\pi_{t-s}(X)$

(cf. [4, III, §15]) is useful, where X is a CW spectrum, $\pi_*(X)$ is its homotopy group and G is a ring spectrum. For X and G = E, F with some conditions, H. R. Miller [10] introduced the May and Mahowald spectral sequences

(2)
$$E^{\text{May}} = \{E^{s,t}_{u,r}, d^{\text{May}}_r: E^{s,t}_{u,r} \to E^{s+1,t+r}_{u+r,r}\} \text{ abutting to } E(E)^{s,u-t}_2 \text{ and} \\ E^{\text{Mah}} = \{\tilde{E}^{s,t}_{u,r}, d^{\text{Mah}}_r: \tilde{E}^{s,t}_{u,r} \to \tilde{E}^{s+r,t-r+1}_{u,r}\} \text{ converging to } E(F)^{s+t,u}_2 \}$$

for $E(G)_2$ in (1), which satisfy the following

(o)
$$E_{u,1}^{s,t} = \tilde{E}_{u,2}^{s,t} = A_u^{s,t}$$
; and for any $x \in A_u^{s,t}$,

(ii) if x converges to x^F in E^{Mah} , then so does $d_1^{May}x$ to $(-1)^t d_2^F x^F$.

Especially, he defined these algebraically in case when

(3) $X = S^0$, E = BP at a prime p, and $F = HZ_p$ (BP is the Brown-Peterson spectrum, and HZ_p is the spectrum of the ordinary homology $H_*(; Z_p)$); and calculated some differential $d_2^{HZ_p}$ in (1) for $X = S^0$.

The purpose of this paper is to argue the existence and relations of these spectral sequences. Let \overline{G} denote the mapping cone of the unit $S^0 \rightarrow G$ of a ring spectrum G, and \overline{G}^n the smash product of *n* copies of \overline{G} . Then the main result in this paper, stated in Theorem 7.2, implies the following

THEOREM. For a CW spectrum X and ring spectra E, F, assume that

(4) there is a unit-preserving map $\lambda: E \to F$, and

(5) the F-Adams spectral sequence abutting to $\pi_*(E \wedge \overline{E}^n \wedge X)$ in (1) converges and collapses for any $n \ge 0$.

Then we have the spectral sequences E^{May} and E^{Mah} in (2) satisfying (0), (ii),

(i) $d_1^{\text{May}} d_2^{\text{Mah}} x = d_2^{\text{Mah}} d_1^{\text{May}} x$ for any $x \in A_u^{s,t}$,

- (iii) if x converges to x^E in E^{May} , then so does $d_2^{Mah}x$ to $d_2^E x^E$, and
- (iv) if the assumptions in (ii)-(iii) hold, then some $y \in A_{u+1}^{s+2,t}$ converges to $d_2^E x^E$ in E^{May} and to $(-1)^t d_2^F x^F$ in E^{Mah} .