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1. Introduction

This paper is concerned with the Dirichlet problem for second order

quasilinear elliptic equations of the type

(1.1) -divΛ(x, Fu) + B{x, u9 Fu) = 0 in Ω ,

(1.2) u = g on<3ί2,

where Ω is either a bounded domain or an exterior domain in RN, A is a given

N-vector function of the variables x and Fu = (du/dxl9..., du/dxN), B is a given

scalar function of the variables x, u and Fu, and g is a function given on the

boundary δΩ of Ω. We allow the domain Ω to be the entire space RN, in

which case the boundary condition (1.2) is void. Equation (1.1) is allowed to

be degenerate so that the nonlinear pseudo-Laplacian equation

(1.3) - d i \ ( \ F u \ p ~ 2 F u ) + B ( x , u, Fu) = 0 i n Ω , p > l ,

is included as a special case of it. Our objective here is to develop the method

of supersolutions and subsolutions for constructing weak solutions of the prob-

lem (1.1)—(1.2) and for analyzing the structure of the set of weak solutions thus

constructed.

A systematic study of nonlinear elliptic boundary problems by means of

the supersolution-subsolution method was initiated by Nagumo [21], who

considered the semilinear equation

(1.4) - Π , = 1 α , ( x ) ^ + B(x, ii, Fu) = 0

in a bounded domain Ω and established an existence theorem asserting that

the problem (1.4)—(1.2) has a classical solution if suitable classical quasi-

supersolutions and quasi-subsolutions are known to exist. (By a quasi-super-

solution (quasi-subsolution) we mean a function which is expressed locally as

the minimum (maximum) of a finite number of supersolutions (subsolutions) of

the problem.) Nagumo's existence theory has been generalized and extended in

various directions. Among other things Akό [1] (see also Hirai and Akό [14])


